Questions from Homework

$$f(3) = 33$$
 $f(x) = 4x^3 - 3x + 3$
 $f'(3) = 33$ $f'(x) = 8x - 3$
 $f''(3) = 8$ $f''(x) = 8$

6
$$g(x) = \frac{1}{\sqrt{3x+4}} = \frac{1}{(3x+4)^{1/3}} = (3x+4)^{-1/3}$$

$$9'(x) = -\frac{1}{5}(3x+4)^{-3/5}(3) = -\frac{3}{5}(3x+4)^{-3/5}$$

$$9''(x) = \frac{9}{4}(3x+4)^{-5/3}(3) = \frac{37}{4}(3x+4)^{-5/3}$$

$$9'''(x) = -\frac{135}{8}(3x+4)^{-7/8}(3)$$

$$9''(x) = \frac{-405}{8(3x+4)^{2/3}}$$

$$9''(x) = -\frac{405}{8\sqrt{(3x+41)^{7}}}$$

Implicit Differentiation

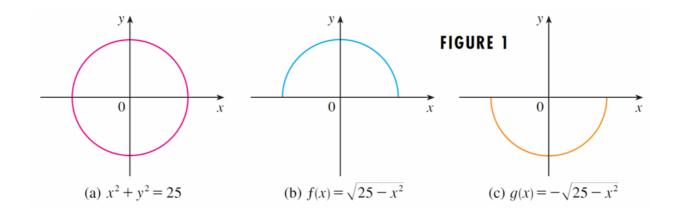
So far we have described functions by expressing one variable *explicitly* in terms of another variable: for example,

$$y = x^2$$

$$y' = \partial x$$

$$\partial x = \partial x$$

- Sometimes an equation only <u>implicitly</u> defines y as a function (or functions) of x.
- Examples


$$x^2 + y^2 = 25$$

$$x^3 + y^3 = 6xy$$

$$x^{3}+y^{3}=35$$

 $y^{3}=35-x^{3}$
 $y=\frac{1}{2}\sqrt{35-x^{3}}$

• The first equation could easily be rearranged for y = ...

$$y = \pm \sqrt{25 - x^2}$$
 Actually gives two functions

Implicit Differentiation

- There is a way called *implicit differentiation* to find dy/dx without solving for y:
 - First <u>differentiate</u> both sides of the equation with respect to x;
 - Then solve the resulting equation for y' or $\frac{\partial y}{\partial y}$

We will always <u>assume</u> that the given equation does indeed define y as a differentiable function of x.

Example

For the circle $x^2 + y^2 = 25$, find a) dy/dx or y' or (Slope of the tangent) b) an equation of the tangent at the point (3, 4)

Solution:

Start by differentiating both sides of the equation:

$$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(25)$$

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 0$$

Remembering that y is a function of x and using the Chain Rule, we have

$$2x + 2y \frac{\partial}{\partial x} = 0$$

Thus...

Solving for $\frac{dy}{dx}$...

$$3yy' = -3x$$

$$y' = -\frac{3}{2}x$$

$$y' = -\frac{3}{4}x$$

Therefore at the point (3,4) the equation of the tangent would be...

$$y - 4 = -\frac{3}{4}(x - 3)$$
 or $\frac{3x + 4y - 25}{4}$
 $4y - 6 = -3x + 9$
 $3x + 4y - 35 = 0$

Same Example Revisited

- Since it is easy to solve this equation for y, we
 - do so, and then
 - find the equation of the tangent line by earlier methods, and then
 - compare the result with our preceding answer:

Solution

- Solving the equation gives $y = \pm \sqrt{25 x^2}$ as before.
- The point (3, 4) lies on the <u>upper</u> semicircle $y = \sqrt{25 - x^2}$ and so we consider the function $f(x) = \sqrt{25 - x^2}$

Differentiate f:
$$y = \sqrt{35 \cdot x^3} = (35 - x^3)^{1/3}$$

 $y' = \frac{1}{35 \cdot x^3} = \frac{-(3)}{35 \cdot 6} = \frac{-3}{4}$

Equation:

$$y-4=-\frac{3}{4}(x-3)$$

 $y-4=-\frac{3}{4}x+9$
 $4y-16=-3x+9$
 $3x+4y+35=0$

Solution (cont'd)

So
$$f'(3) = -\frac{3}{\sqrt{25-3^2}} = -\frac{3}{4}$$

leading to the same equation

$$3x + 4y = 25$$

for the tangent that we obtained earlier.

Note that although this problem <u>could</u> be done both ways, implicit differentiation was easier!

Sometimes Implicit Differentiation is not only the easiest way, it's the *only* way

Example:
Given
$$x^3 + y^3 = 6xy$$

Find $\frac{dy}{dx}$ $3x^3 + 3y^3y' = 6xy' + 6y$
 $3y^3y' - 6xy' = -3x^3 + 6y$
 $y' = -\frac{3}{3}x^3 + 6y$

Find
$$\frac{dy}{dx}$$

$$2x^{5} + x^{4}y + y^{5} = 36$$

$$10x^{4} + x^{4}y' + 4x^{3}y + 5y^{4}y' = 0$$

$$x^{4}y' + 5y^{4}y' = -10x^{4} - 4x^{3}y$$
Factor $y'(x^{4} + 5y^{4}) = -10x^{4} - 4x^{3}y$

$$y' = -\frac{10x^{4} - 4x^{3}y}{x^{4} + 5y^{4}}$$

$$y' = -\frac{10x^{4} + 4x^{3}y}{x^{4} + 5y^{4}}$$

$$\mathbb{O} h \frac{3x}{x+y} = y$$

$$\frac{(\chi+\eta)_{9}}{9(\chi+\eta)-9\chi(1+\eta')}=\lambda'$$

$$\frac{(x+y)^3}{2x+3y-3xy} = y$$

$$\frac{\partial y - \partial x y'}{(x+y)} = y'$$

$$\partial y - \partial x y' = y'(x+y)^{3}$$

$$\partial y = y'(x+y)^{3} + \partial x y'$$

$$\partial y = y'[(x+y)^{3} + \partial x]$$

$$(x+h)_3+9x=h,$$

9)
$$\sqrt{x} + \sqrt{y} = 1$$

$$\frac{1}{2}x^{2} + \frac{1}{2}y^{3}y' = 0$$

$$y' = -\frac{\lambda y}{\lambda y} = -\frac{y}{y}$$

(3) e)
$$\sqrt{x+y} + \sqrt{xy} = 4$$
 (3,2)
 $(x+y)^{1/6} + (xy)^{1/6} = 4$ $\sqrt{x+y}^{1/6}(xy) + y) = 0$
 $\sqrt{x+y}^{1/6}(1+y) + \sqrt{x+y}^{1/6}(xy) + y) = 0$
 $\sqrt{x+y}^{1/6}(1+y)^{1/6}(xy)^{1$

(15)
$$9x^3 + 4y^3 = 36$$
 (15) $\frac{3}{6}$ (15) $\frac{3}{$

(a)
$$y' = \frac{\csc x}{1 + \cot x}$$

$$y' = \frac{(1 + \cot x)(-\csc x \cot x) - \csc x}{(1 + \cot x)^3}$$

$$y' = -\frac{\csc x}{(\cot x)^3} + \frac{\csc^3 x}{(1 + \cot x)^3}$$

$$y' = -\frac{\csc x}{(\cot x)^3} + \frac{\cot^3 x}{(\cot x)^3}$$

$$y' = -\frac{\csc x}{(\cot x)^3}$$

$$y' = -\frac{\csc x}{(\cot x)^3}$$

$$y = \sqrt{3x^{3} + \sqrt{x^{2} - 8x\sqrt{3 - x^{3}}}}$$

$$= \left[2x^{3} + (x^{2} - 8x)^{3} - x^{3}\right]^{3}$$

$$\begin{array}{lll}
\Psi & = \frac{(2x+3)^3}{\sqrt{4x-7}} & = \frac{(2x+3)^3}{(4x-7)^{1/4}} & x = 3 & (2,343) \\
Y & = \frac{(26)+3)^3}{\sqrt{4(2)-7}} & y' & = \frac{(4x-7)^{1/3}(3)(2x+3)(3) - (2x+3)(3)(4x-7)(4)}{4x-7} \\
= & = \frac{7^3}{\sqrt{17}} & y' & = \frac{(1)(3)(49)(3) - (243)(4)(4)(4)}{4x-7} \\
= & = 343 & = 394 & = 394 \\
Y - & = 343 & = 394 & = 394 \\
Y - & = 343 & = 394 & = 394 \\
Y - & = 343 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x + & = 394 & = 394 \\
392x$$