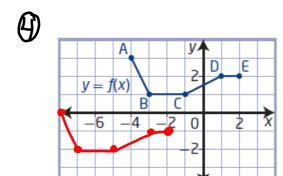
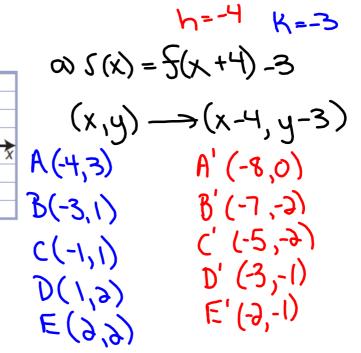

Warm-Up


8. Copy and complete the table.


Translation	Transformed Function	Transformation of Points	
vertical	y = f(x) + 5	$(x, y) \rightarrow (x, y + 5)$	
Н	y = f(x + 7)	$(x, y) \rightarrow (x - 7, y)$	h=-7
H	y = f(x - 3)	$(x,y) \rightarrow (x+3,y)$)
V	y = f(x) - 6	$(x,y) \rightarrow (X,y-6)$) K=-6
horizontal and vertical	y+9=f(x+4)	$(x,y) \rightarrow (x-4,y-4)$	9) h=-4 K=-9
horizontal and vertical	y=5(x-4)-6	$(x, y) \rightarrow (x + 4, y - 6)$	h=4 K=6
H+V	4=5(x+2)+3	$(x, y) \rightarrow (x - 2, y + 3)$	h= -0 K=3
horizontal and vertical		(x,y) -> (x+h,y	+K)

Questions from Homework

(a)
$$h(x) = f(x-a)$$
 $h=a$
(b) $h(x) = f(x-a)$ $h=a$
(c) $(-1,1)$
(c) $(-1,1)$
(d) $(-1,1)$
(e) $(-1,1)$
(f) $(-1,1)$
(g) $(-1,1)$
(g)

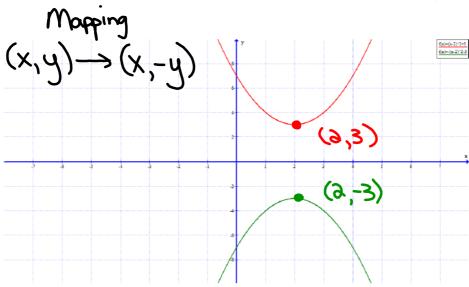
Transformations:

New Functions From Old Functions

Translations

Stretches

Reflections


Reflections and Stretches

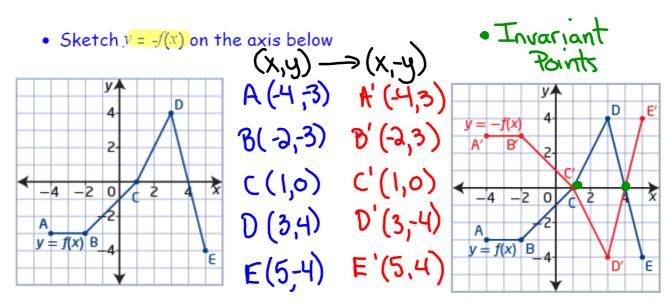
Focus on...

- developing an understanding of the effects of reflections on the graphs of functions and their related equations
 - developing an understanding of the effects of vertical and horizontal stretches on the graphs of functions and their related equations

A **reflection** of a graph creates a mirror image in a line called the line of reflection. Reflections, like translations, do not change the shape of the graph. However, unlike translations, reflections may change the orientation of the graph.

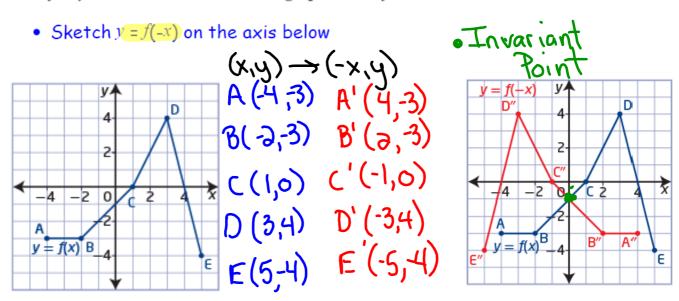
• When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the x-axis. (vertical set lection)

• When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the y-axis. (hor 120nta)



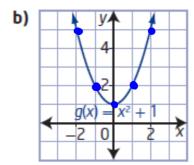
invariant point

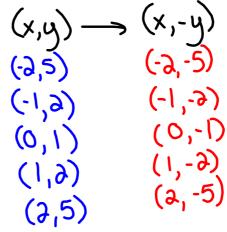
- a point on a graph that remains unchanged after a transformation is applied to it
- any point on a curve that lies on the line of reflection is an invariant point


Remember...

• When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the *x*-axis.

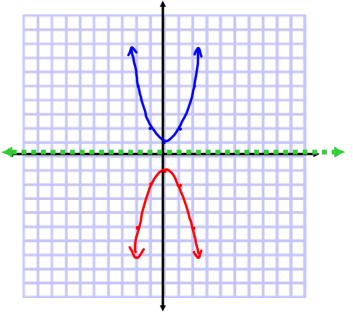
Remember...


• When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the *y*-axis.


Questions from Homework

Page 28 #1, 3, and 4

- 3. Consider each graph of a function.
 - Copy the graph of the function and sketch its reflection in the <u>x-axis</u> on the same set of axes.
 - State the equation of the reflected function in simplified form.
 - State the domain and range of each function.



· vertical reflection

g(x) = x³+1 D'. {x| x ∈ R} R'. {y| y ≥ 1, y ∈ R}

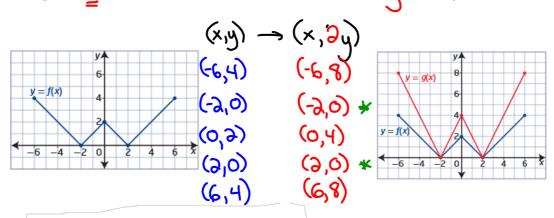
$$P(x) = -x_3 - 1$$

 $P(x) = -(x_3 + 1)$

Vertical and Horizontal Stretches

A **stretch**, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

- When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.
- When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

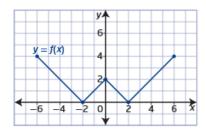

stretch

- a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor
- scale factors between <u>0</u> and <u>1</u> result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection

Vertical Stretch or Compression...

• When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.

a) g(x) = 2f(x) $\alpha = 3 \rightarrow \text{ vertical stretch by a factor of } 3$


The invariant points are (-2, 0) and (2, 0).

For f(x), the domain is $\{x \mid -6 \le x \le 6, x \in \mathbb{R}\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 4, y \in \mathbb{R}\}$, or [0, 4].

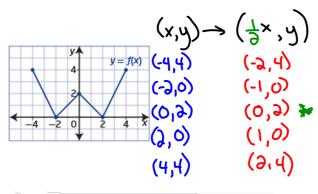
For g(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 8, y \in R\}$, or [0, 8].

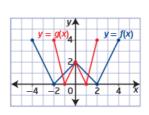
and

b)
$$g(x) = \frac{1}{2}f(x)$$

The invariant points are For f(x), the domain is

and the range is

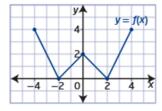

For g(x), the domain is and the range is

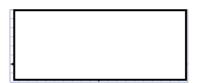


Horizontal Stretch or Compression...

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

a) $g(x) = f(2x) b = \partial \rightarrow \text{horizontal stretch by a factor of } \frac{1}{\partial}$

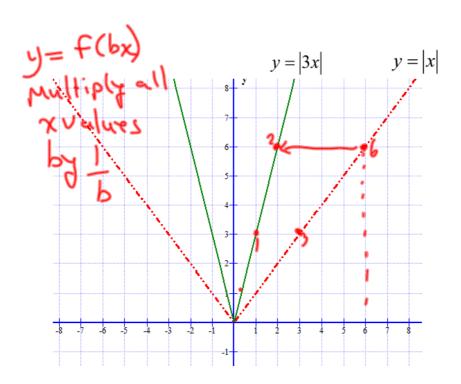



The invariant point is (0, 2).

For f(x), the domain is $\{x \mid -4 \le x \le 4, x \in R\}$, or [-4, 4], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

For g(x), the domain is $\{x \mid -2 \le x \le 2, x \in \mathbb{R}\}$, or [-2, 2], and the range is $\{y \mid 0 \le y \le 4, y \in \mathbb{R}\}$, or [0, 4].

b) $g(x) = f\left(\frac{1}{2}x\right)$ $b = \frac{1}{2} \rightarrow HSF & 2$



The invariant point is

For f(x), the domain is and the range is

For g(x), the domain is and the range is

Horizontal Stretch or Compression...

Horizontal Stretch or Compression...

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

$$y = -3f(-2x) + 7$$

Homework

Page 28 # 2, 5, 6, 7