Molecular Models What are the three-dimensional structures of the molecular substances: water (HO), hydrogen peroxide (HO₂), hydrogen sulfide (H₂S), methane (CH₄), methanol (CHOH), ethanol (C₂H₅OH), propane (C₃H₈), ammonia (NH₃), chlorine and sulfur (cyclooctasulfur)? | Name | Molecular
Formula | Structural Diagram | | |----------|----------------------|--------------------|--| | methanol | CH30H | H - C - O - H
H | | | chlorine | Cl2 | CI-CI | | | Sufur | S ₈ | S-5
5 | | | | | 5-5 | # Naming and Writing Formulas for Acids and Bases Acids are aqueous hydrogen compounds that turn blue litmus red. Bases are aqueous solutions of ionic hydroxides that turn red litmus blue. Not OH Salium hydroxide #### IDENTIFYING ACIDS AND BASES FROM FORMULA Most acid can be identified from **starting with H**or ending in -COOH. i.e. HCl, H₂SO₄, CH₃COOH Note: NH3 and CH4 are not acids! When naming acids, common names (for common acids) or IUPAC names can be used. #### **IUPAC** (modern) Acid Names - name the acid as an aqueous hydrogen compound Ex. aqueous hydrogen sulfide - $HS_{(aq)}$ #### **Classical Acid Names** - used the suffix -ic Ex. sulfuric - used hydro and the suffix -ic Ex. hydrochloric - used suffix -ous Ex. sulfurous - and others (see inside back cover) ## **Rules for Naming Acids** | 1. | If anion | ends in | -ide, the | acid is | "hydro | ic acid" | |----|----------|---------|-----------|---------|--------|----------| | | | | | | | | 3. If anion ends in -ite, the acid is "____ous acid" p. 271-273 EXERCISE # 26-32