Exponential Functions

The graph of an **exponential function**, such as $y = c^x$, is increasing for c > 1, decreasing for 0 < c < 1, and neither increasing nor decreasing for c = 1. From the graph, you can determine characteristics such as domain and range, any intercepts, and any asymptotes.

$y = c^{x},$ c > 1Increasing

exponential function

 a function of the form y = c^x, where c is a constant (c > 0) and x is a variable

Why is the definition of an exponential function restricted to positive values of c?

Did You Know?

Any letter can be used to represent the base in an exponential function. Some other common forms are $y=a^x$ and $y=b^x$. In this chapter, you will use the letter c. This is to avoid any confusion with the transformation parameters, a, b, h, and k, that you will apply in Section 7.2.

Example 1

Analyse the Graph of an Exponential Function

Graph each exponential function. Then identify the following:

- the domain and range
- · the x-intercept and y-intercept, if they exist
- whether the graph represents an increasing or a decreasing function
- · the equation of the horizontal asymptote
- a) $y = 4^x$

b)
$$f(x) = \left(\frac{1}{2}\right)^x$$

Solution

a) Method 1: Use Paper and Pencil

Use a table of values to graph the function.

Select integral values of x that make it easy to calculate the

corresponding values of y for $y = 4^x$.			Increasing
x	У	•D:{X X€R}	у А ф
-2	1 16		18 (2, 16)
-1	1/4	·R: [yly>0,y&R]	10
0	4	• x-int: none	14
1	4	X-INI . NOTE	12-
	16	· y-int: (0,1)	10
			8
		· HA: y=0	6-
			4 (1, 4)
			1 1 / 1 1 2
			$\left(-2, \frac{1}{16}\right) \left(-1, \frac{1}{4}\right)$ (0, 1)
		T	-3 -2 -1 0 1 2 3 ×

b) Method 1: Use Paper and Pencil

Use a table of values to graph the function. Select integral values of x that make it easy to calculate the corresponding values of y for $f(x) = \left(\frac{1}{2}\right)^x$.

Х	f(x)
-3	8
-2	4
-1	2
0	1
1	1/2
2	1/4

0):{x\xer}	
	R: {y y>0,y@	3
Ø	x-int: none	

Example 2

Write the Exponential Function Given Its Graph

What function of the form $y = c^x$ can be used to describe the graph shown?

Solution

Look for a pattern in the ordered pairs from the graph.

Choose a point other than (0, 1) to substitute into the function $y = \left(\frac{1}{4}\right)^x$ to verify that the function is correct. Try the point (-2, 16).

Why should you not use the point (0, 1) to verify that the function is correct?

Check:

Left Side

Right Side

(4)

(4)

Example 3

Application of an Exponential Function

A radioactive sample of radium (Ra-225) has a half-life of 15 days. The mass, m, in grams, of Ra-225 remaining over time, t, in 15-day intervals, can be modelled using the exponential graph shown.

- b) What are the domain and range of this function?
- c) Write the exponential decay model that relates the mass of Ra-225 remaining to time, in 15-day intervals.

d) Estimate how many days it would take for Ra-225 to decay to $\frac{1}{30}$ of its original mass.

c)
$$y = (1)(\frac{1}{3})^{\frac{x}{15}}$$
 Trine it takes to $\frac{1}{3}$

Thitial Base ($\frac{1}{3}$)

Amount half life

$$\frac{1}{30} = 1 \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\frac{1}{30} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

15.
$$4.91 = \frac{X}{15}$$

Homework

#1-8 on page 343

$$4C_1 = 4$$
 $1, 5, 10, 25, 6, 11, 26, 15, 30, 35$
 $4C_3 = 6$
 $4C_3 = 4$
 $4C_3 = 4$
 $4C_4 = 1$

7.1 Characteristics of Exponential Functions, pages 342 to 345

- 1. a) No, the variable is not the exponent.
 - b) Yes, the base is greater than 0 and the variable is the exponent.
 - c) No, the variable is not the exponent.
 - d) Yes, the base is greater than 0 and the variable is the exponent.
- **2.** a) $f(x) = 4^x$
- **b)** $g(x) = \left(\frac{1}{4}\right)^x$
- c) x = 0, which is the y-intercept
- 3. a) B
- **b)** C
- c) A
- **4. a)** $f(x) = 3^x$
- **b)** $f(x) = \left(\frac{1}{5}\right)^x$

domain $\{x \mid x \in R\}$, range $\{y \mid y > 0, y \in R\}$, y-intercept 1, function increasing, horizontal asymptote y = 0

domain $\{x \mid x \in \mathbb{R}\}$, range $\{y \mid y > 0, y \in \mathbb{R}\}$, y-intercept 1, function increasing, horizontal asymptote y = 0

domain $\{x \mid x \in R\}$, range $\{y \mid y > 0, y \in R\}$, y-intercept 1, function decreasing, horizontal asymptote y = 0

domain $\{x \mid x \in R\}$, range $\{y \mid y > 0, y \in R\}$, y-intercept 1, function decreasing, horizontal asymptote y = 0

- **6. a)** c > 1; number of bacteria increases over time
 - b) 0 < c < 1; amount of actinium-225 decreases over time
 - c) 0 < c < 1; amount of light decreases with depth
 - d) c > 1; number of insects increases over time

7. a)

The function $N = 2^t$ is exponential since the base is greater than zero and the variable t is an exponent.

- b) i) 1 person
- ii) 2 people
- iii) 16 people
- iv) 1024 people
- 8. a) If the population increases by 10% each year, the population becomes 110% of the previous year's population. So, the growth rate is 110% or 1.1 written as a decimal.

domain $\{t \mid t \ge 0, t \in \mathbb{R}\}\$ and range $\{P \mid P \ge 100, P \in \mathbb{R}\}\$

c) The base of the exponent would become 100% - 5% or 95%, written as 0.95 in decimal form.

domain $\{t \mid t \ge 0, t \in \mathbb{R}\}$ and range $\{P \mid 0 < P \le 100, P \in \mathbb{R}\}\$