Example 3

Solve Problems Involving Exponential Equations With Different Bases

Christina plans to buy a car. She has saved \$5000. The car she wants costs \$5900. How long will Christina have to invest her money in a term deposit that pays 6.12% per year, compounded quarterly, before she has enough to buy the car?

Solution

The formula for compound interest is $A = P(1 + i)^n$, where A is the amount of money at the end of the investment; P is the principal amount deposited; i is the interest rate per compounding period, expressed as a decimal; and n is the number of compounding periods. In this problem:

A = 5900

P = 5000

 $i = 0.0612 \div 4 \text{ or } 0.0153$

Divide the interest rate by 4 because interest is paid quarterly or four times a year.

$$A = P(1+i)^{n}$$

$$5900 = 5000 (1+0.0153)^{n}$$

$$5900 = 5000 (1.0153)^{n}$$

$$1.18 = (1.0153)^{n}$$

$$(1.0153)^{n} = (1.0153)^{n}$$

$$(1.0153)^{n} = (1.0153)^{n}$$

$$(1.0153)^{n} = (1.0153)^{n}$$

$$(0.9 = n) = (0.9)$$

$$(0.9 = n) = (0.9)$$

$$(0.9 ÷ 4 = 3.736)$$

$$(0.9 ÷ 4 = 3.736)$$

$$(0.9 ÷ 4 = 3.736)$$

$$(0.9 ÷ 4 = 3.736)$$

$$(0.9 ÷ 4 = 3.736)$$

$$(0.9 ÷ 4 = 3.736)$$

The number of milligrams of a drug remaining in the bloodstream t days after consumption is given by the equation:

$$D = 50(0.9)^t$$

- (a) What percentage of the drug leaves the body each day? _____%
- (b) The drug can be detected in urine tests when 2 or more mg of the drug remain in the bloodstream. Will there be evidence of this drug in the bloodstream 28 days after consumption? Provide proof!

$$D = 50(0.9)$$

 $D = 50(0.05733)$
 $D = 2.60$ mg Yes the drug can be delected

$$\left(\frac{1}{31}\right)^{3x+1} = \sqrt{81} \cdot \left(\frac{1}{9}\right)^{x+5}$$

$$\left(\frac{3}{3}\right)^{3} = \left(\frac{3}{3}\right)^{x} \left(\frac{3}{3}\right)^{x+5}$$

$$3^{-6x-3} = 3 \cdot 3^{-3x-10}$$

$$3^{-6x-3} = -3x-8$$

$$-6x-3 = -3x-8$$

$$5 = 4x$$

$$\frac{5}{4} = x$$

3

Understanding Logarithms

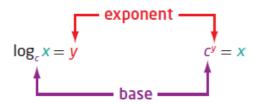
Focus on...

- demonstrating that a logarithmic function is the inverse of an exponential function
- sketching the graph of $y = \log_c x$, c > 0, $c \ne 1$
- determining the characteristics of the graph of $y = \log_c x$, c > 0, $c \ne 1$
- · explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

For the exponential function $y = c^x$, the inverse is $x = c^y$. This inverse is also a function and is called a **logarithmic function**. It is written as $y = \log_c x$, where c is a positive number other than 1.

Logarithmic Form

Exponential Form



Since our number system is based on powers of 10, logarithms with base 10 are widely used and are called common logarithms. When you write a common logarithm, you do not need to write the base. For example, $\log 3$ means $\log_{10} 3$.

logarithmic function

a function of the form y = log_c x, where c > 0 and c ≠ 1, that is the inverse of the exponential function y = c^x

logarithm

- an exponent
- in x = c^y, y is called the logarithm to base c of x

common logarithm

 a logarithm with base 10 Write each of the following in logarithmic form

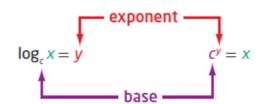
a)
$$32 = 2^5$$

a)
$$32 = 2^5$$
 b) $2^{-5} = \frac{1}{32}$

c)
$$x = 10^y$$

Logarithmic Form

Exponential Form



Write each of the following in exponential form

a)
$$\log_4 16 = 2$$

b)
$$\log_2\left(\frac{1}{32}\right) = -5$$

c)
$$\log 65 = 1.8129$$

Example 1 -

Evaluating a Logarithm

Evaluate.

- a) $\log_7 49$
- **b)** log₆ 1
- c) $\log 0.001$ d) $\log_2 \sqrt{8}$

Example 2

Determine an Unknown in an Expression in Logarithmic Form

Determine the value of x.

- a) $\log_5 x = -3$
- **b)** $\log_x 36 = 2$
- c) $\log_{64} x = \frac{2}{3}$

Example 3

Graph the Inverse of an Exponential Function

- a) State the inverse of $f(x) = 3^x$.
- **b)** Sketch the graph of the inverse. Identify the following characteristics of the inverse graph:
 - · the domain and range
 - \bullet the x-intercept, if it exists
 - the y-intercept, if it exists
 - · the equations of any asymptotes

Solution

- a) The inverse of $y = f(x) = 3^x$ is or, expressed in logarithmic form, Since the inverse is a function, it can be written in function that $y = \log_3 x$ is a function?
- **b)** Set up tables of values for both the exponential function, f(x), and its inverse, $f^{-1}(x)$. Plot the points and join them with a smooth curve.

$f(x)=3^x$	
X	У
-3	
-2	
-1	
0	
1	
2	
3	

$f^{-1}(x) = \log_3 x$	
X	У
,	



The graph of the inverse, $f^{-1}(x) = \log_3 x$, is a reflection of the graph

of $f(x) = 3^x$ about the line y = x. For $f^{-1}(x) = \log_3 x$,

- the domain is and the range is
- \bullet the x-intercept is
- \bullet there is no y-intercept
- the vertical asymptote, the axis, has equation there is no asymptote

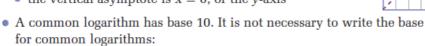
How do the characteristics of $f^{-1}(x) = \log_3 x$ compare to the characteristics of $f(x) = 3^x$?

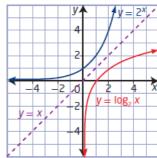
Key Ideas

- A logarithm is an exponent.
- Equations in exponential form can be written in logarithmic form and vice versa.

Exponential Form Logarithmic Form $x = c^y$ $y = \log_c x$

- The inverse of the exponential function $y = c^x$, c > 0, $c \ne 1$, is $x = c^y$ or, in logarithmic form, $y = \log_c x$. Conversely, the inverse of the logarithmic function $y = \log_c x$, c > 0, $c \ne 1$, is $x = \log_c y$ or, in exponential form, $y = c^x$.
- The graphs of an exponential function and its inverse logarithmic function are reflections of each other in the line y = x, as shown.
- For the logarithmic function $y = \log_c x$, c > 0, $c \neq 1$,
 - the domain is $\{x \mid x > 0, x \in R\}$
 - the range is $\{y \mid y \in R\}$
 - the x-intercept is 1
 - the vertical asymptote is x = 0, or the y-axis

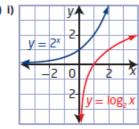




Homework

#1-5, 8, 10, 12, 13, 17 on page 380

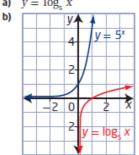
8.1 Understanding Logarithms, pages 380 to 382



- b) i)
- 2. a) $\log_{12} 144 = 2$
 - c) $\log_{10} 0.000 \ 01 = -5$
- 3. a) $5^2 = 25$
 - c) $10^6 = 1000000$
- **4. a)** 3
- **b)** 0

- ii) $y = \log_2 x$
- iii) domain $\{x \mid x > 0, x \in R\},\$ range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote x = 0
- ii) $y = \log_1 x$
- iii) domain $\{x\mid x>0,\,x\in R\},$ range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote
- **b)** $\log_8 2 = \frac{1}{3}$
- $\log_{7}(y+3)=2x$
- $8^{\frac{2}{3}} = 4$
- $11^y = x + 3$ d)
- d) -3
- **5.** a = 4; b = 5

8. a) $y = \log_5 x$



domain $\{x \mid x > 0, x \in R\}$, range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote x = 0

d) 8

- **10.** They are reflections of each other in the line y = x.
- 11. a) They have the exact same shape.
 - One of them is increasing and the other is decreasing.
- 12. a) 216
- **b)** 81
- 13. a) 7
- **b)** 6 b)
- 14. a) 0
- **15**. −1
- **16.** 16
- **17.** a) $t = \log_{1.1} N$
- b) 145 days

c) 64

- 18. The larger asteroid had a relative risk that was 1479 times as dangerous.
- 19. 1000 times as great
- **20.** 5
- **21.** m = 14, n = 13
- **22.** 4n
- **23.** $y = 3^{2^{i}}$