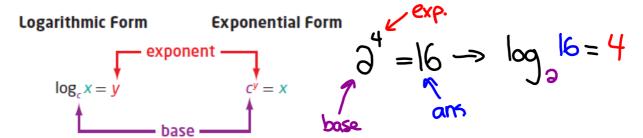
# **Understanding Logarithms**

#### Focus on...

- demonstrating that a logarithmic function is the inverse of an exponential function
- sketching the graph of  $y = \log_c x$ , c > 0,  $c \ne 1$
- determining the characteristics of the graph of  $y = \log_c x$ , c > 0,  $c \ne 1$
- · explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

For the exponential function  $y = c^x$ , the inverse is  $x = c^y$ . This inverse is also a function and is called a **logarithmic function**. It is written as  $y = \log_c x$ , where c is a positive number other than 1.



Since our number system is based on powers of 10, logarithms with base 10 are widely used and are called common logarithms. When you write a common logarithm, you do not need to write the base. For example,  $\log 3$  means  $\log_{10} 3$ .

# logarithmic function

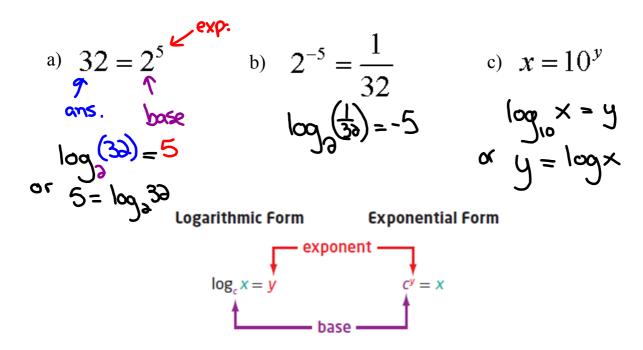
a function of the form y = log<sub>c</sub> x, where c > 0 and c ≠ 1, that is the inverse of the exponential function y = c<sup>x</sup>

## logarithm

- an exponent
- in x = c<sup>y</sup>, y is called the logarithm to base c of x

## common logarithm

 a logarithm with base 10 Write each of the following in logarithmic form



Write each of the following in exponential form

# Example 1

# **Evaluating a Logarithm**

Evaluate.

a) 
$$\log_{7} 49$$
 b)  $\log_{6} 1$  c)  $\log 0.001$  d)  $\log_{2} \sqrt{8}$ 

Let  $x = \log_{7} 49$  Let  $x = \log_{10} 1$  Let  $x = \log_{10} 0.001$  let  $x = \log_{10} \sqrt{8}$ 
 $7 = 49 \xrightarrow{\text{(exp.)}} 6^{x} = 1$ 
 $7 = 7 \xrightarrow{\text{(out town)}} 6^{x} = 6$ 
 $7 = 7 \xrightarrow{\text{(out t$ 

# Example 2

#### Determine an Unknown in an Expression in Logarithmic Form

Determine the value of *x*.

a) 
$$\log_5 x = -3$$

**b)** 
$$\log_x 36 = 2$$

c) 
$$\log_{64} x = \frac{2}{3}$$

a) 
$$5^3 = x$$

$$\left(\frac{1}{5}\right) = \times$$

by 
$$x^3 = 36$$

$$\chi = 0$$

of x.  
a) 
$$5^{-3} = x$$
 b)  $x^{2} = 36$  c)  $64^{3} = x$   

$$(\frac{1}{5})^{3} = x$$
  $x = \pm 6$   $x = 6$   

$$\frac{1}{165} = x$$

Page 380

let x = log 28 < ans
bose

$$3^4 = 16$$
$$3^2 = 38$$
$$3^5 = 33$$

6) State the value of x so that logx is as a positive integer x>1 b) a regative integer 0< x<1

c) zero 
$$\rightarrow \log_3 x = 0$$
  
 $3^\circ = x$   
 $1 = x$ 

d) a rational number -> any x value.

# Exponential Function (Inverse)

Logarithmic Function

$$y = c^{x}$$
,  $c > 0$ ,  $c \neq 1$ 
 $y = \log_{c} x$ ,  $c > 0$ ,  $c \neq 1$ 

hilt; vous

#### Example 3

#### **Graph the Inverse of an Exponential Function**

- a) State the inverse of  $f(x) = 3^x$ .
- **b)** Sketch the graph of the inverse. Identify the following characteristics of the inverse graph:
  - the domain and range
  - the x-intercept, if it exists
  - the y-intercept, if it exists
  - the equations of any asymptotes

a) Find Inverse:

$$5(x) = 3^{x}$$

0  $y = 3^{x}$ 

0  $y = 3^{x}$ 

1  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

1  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

3  $y = 3^{x}$ 

4  $y = 3^{x}$ 

5  $y = 3^{x}$ 

7  $y = 3^{x}$ 

7  $y = 3^{x}$ 

8  $y = 3^{x}$ 

9  $y = 3^{x}$ 

1  $y = 3^{x}$ 

2  $y = 3^{x}$ 

2  $y = 3^{x}$ 

2  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

3  $y = 3^{x}$ 

4  $y = 3^{x}$ 

1  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

4  $y = 3^{x}$ 

1  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

4  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

4  $y = 3^{x}$ 

5  $y = 3^{x}$ 

1  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

4  $y = 3^{x}$ 

5  $y = 3^{x}$ 

7  $y = 3^{x}$ 

1  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

4  $y = 3^{x}$ 

5  $y = 3^{x}$ 

6  $y = 3^{x}$ 

1  $y = 3^{x}$ 

1  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

4  $y = 3^{x}$ 

5  $y = 3^{x}$ 

7  $y = 3^{x}$ 

1  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

3  $y = 3^{x}$ 

4  $y = 3^{x}$ 

5  $y = 3^{x}$ 

7  $y = 3^{x}$ 

1  $y = 3^{x}$ 

1  $y = 3^{x}$ 

2  $y = 3^{x}$ 

3  $y = 3^{x}$ 

4  $y = 3^{x}$ 

5  $y = 3^{x}$ 

7  $y = 3^{x}$ 

8  $y = 3^{x}$ 

9  $y = 3^{x}$ 

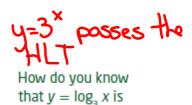
1  $y = 3^{x}$ 

1  $y = 3^{x}$ 

1

#### Solution

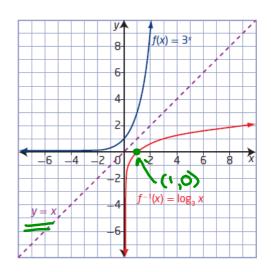
a) The inverse of  $y = f(x) = 3^x$  is  $x = 3^y$  or, expressed in logarithmic form,  $y = \log_3 x$ . Since the inverse is a function, it can be written in function notation as  $f^{-1}(x) = \log_3 x$ .



**b)** Set up tables of values for both the exponential function, f(x), and its inverse,  $f^{-1}(x)$ . Plot the points and join them with a smooth curve.

| $ f(x) = 3^x $ |                |
|----------------|----------------|
| X              | У              |
| -3             | <u>1</u><br>27 |
| -2             | <u>1</u>       |
| -1             | <u>1</u><br>3  |
| 0              | 1              |
| 1              | 3              |
| 2              | 9              |
| 3              | 27             |

| $f^{-1}(x) = \log_3 x$ |    |
|------------------------|----|
| X                      | У  |
| <u>1</u><br>27         | -3 |
| <u>1</u><br>9          | -2 |
| $\frac{1}{3}$          | -1 |
| 1                      | 0  |
| 3                      | 1  |
| 9                      | 2  |
| 27                     | 3  |



a function?

The graph of the inverse,  $f^{-1}(x) = \log_3 x$ , is a reflection of the graph

of  $f(x) = 3^x$  about the line y = x. For  $f^{-1}(x) = \log_3 x$ ,

- the domain is  $\{x \mid x > 0, x \in R\}$  and the range is  $\{y \mid y \in R\}$
- the x-intercept is 1 or (1,0)
- there is no y-intercept
- the vertical asymptote, the *y*-axis, has equation x = 0; there is no horizontal asymptote

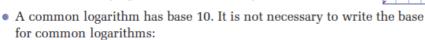
How do the characteristics of  $f^{-1}(x) = \log_3 x$  compare to the characteristics of  $f(x) = 3^x$ ?

#### **Key Ideas**

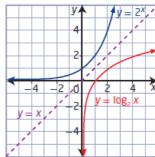
- A logarithm is an exponent.
- Equations in exponential form can be written in logarithmic form and vice versa.

Exponential Form Logarithmic Form  $x = c^y$   $y = \log_c x$ 

- The inverse of the exponential function  $y=c^x$ , c>0,  $c\neq 1$ , is  $x=c^y$  or, in logarithmic form,  $y=\log_c x$ . Conversely, the inverse of the logarithmic function  $y=\log_c x$ , c>0,  $c\neq 1$ , is  $x=\log_c y$  or, in exponential form,  $y=c^x$ .
- The graphs of an exponential function and its inverse logarithmic function are reflections of each other in the line y = x, as shown.
- For the logarithmic function  $y = \log_c x$ , c > 0,  $c \neq 1$ ,
  - the domain is  $\{x \mid x > 0, x \in \mathbb{R}\}$
  - the range is  $\{y \mid y \in R\}$
  - the x-intercept is 1
  - the vertical asymptote is x = 0, or the *y*-axis





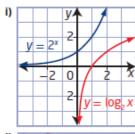


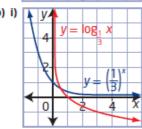
# Homework

#1-5, 8, 10, 12, 13, 17 on page 380

#### 8.1 Understanding Logarithms, pages 380 to 382

1. a) i)





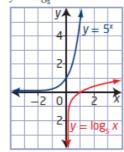
- 2. a)  $\log_{12} 144 = 2$ 
  - c)  $\log_{10} 0.000 \ 01 = -5$
- 3. a)  $5^2 = 25$ 
  - c)  $10^6 = 1000000$
- **4. a)** 3
- **b)** 0
- **5.** a = 4; b = 5

- ii)  $y = \log_2 x$
- iii) domain  $\{x \mid x > 0, x \in R\},\$ range  $\{y \mid y \in R\}$ , x-intercept 1, no y-intercept, vertical asymptote x = 0
- ii)  $y = \log_1 x$
- iii) domain

 $\{x\mid x>0,\,x\in R\},$ range  $\{y \mid y \in R\}$ , x-intercept 1, no y-intercept, vertical asymptote

- **b)**  $\log_8 2 = \frac{1}{3}$
- $\log_{7}(y+3)=2x$
- $8^{\frac{2}{3}} = 4$
- $11^y = x + 3$
- d) -3

**8.** a)  $y = \log_5 x$ 



domain  $\{x \mid x > 0, x \in R\}$ , range  $\{y \mid y \in R\}$ , x-intercept 1, no y-intercept, vertical asymptote x = 0

**d)** 8

- **10.** They are reflections of each other in the line y = x.
- 11. a) They have the exact same shape.
  - One of them is increasing and the other is decreasing.
- 12. a) 216
- **b)** 81 **b)** 6
- 13. a) 7 14. a) 0
- b)
- **15**. −1
- **16.** 16
- **17.** a)  $t = \log_{1.1} N$
- b) 145 days

c) 64

- 18. The larger asteroid had a relative risk that was 1479 times as dangerous.
- 19. 1000 times as great
- **20.** 5
- **21.** m = 14, n = 13
- **22.** 4n
- **23.**  $y = 3^{2^x}$