Questions from Homework
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Warm Up

Determine the general antiderivative for the following:

» What would you differentiate that would give the function below?
e Remember add 1 to the exponent, then divide by this exponent.

Find the most general antiderivative of:
f'(x)=7x"+9x" +8x -1
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Antiderivatives
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This operation of determining the original function from its derivative is the inverse
operation of differentiation and we call it antidifferentiation.

Definition: A function F' is called an antiderivative of / on an interval /
if F'(x) =f(x) forall x in I.

"F(x) is an antiderivative of f(x)"

It should be emphasized that if F(x) is an antiderivative of f(x), then F(x) + C
(C is any constant) is also an antiderivative of f(x).


http://www.youtube.com/watch?v=0s4_ojv_hny

Indefinite Integration

The process of antidifferentiation is often called integration or indefinite integration.
To indicate that the antiderivative of f{x)= 3x” is F(x)=x> + C, we write

j3x2dx: x+C

We say that the antiderivative or indefinite integral of 3x° with respect to x
equals x° + C.

In general, If(x)dx — F(I) +(C

Integral Sign Integrand  Variable of Constant of
Intergration Integration



Examples:
Determine the general antiderivative:
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Table of some of the Most General Antiderivatives

where a is a constant!

Function, f(x)

Most General Antiderivative, F(x)
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Examples:
Determine the general antiderivative:

v

x Note: Constants do not change these but
j 5¢*dx g

powers do
= 8e+C

/

f=2

X

F&O) = 10lnlx\+C

All of these have a linear power of x (that is x is to the power of one).




Examples:
Determine the general antiderivative:

ll}xdx If there is a constant in front of the linear x then divide by that
€ constant (do not add one to the constant for these simple integrals).
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Practice Problems...
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Antiderivatives involving chain rule...

Remember how the Chain Rule works...

fx)=g(x)f
f(x)=nlglx)]" g'(x)

10



|ldentifying a unique solution for an antiderivative

Examples:
Determine the function with the given derivative whose

graph satisfies the initial condition provided.

1. f'(x)=2x—cosx+1, f(0)=3

2. f(x)=12x" +6x—4, f(0)=4and f(1)=1
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