Warm Up

Determine the molar concentration of a solution that contains 47.0 g of CaCl₂ dissolved in 550 mL of water.

$$C = ?$$
 $M = 47.0g$
 $V = 550ML$
 $C = \frac{10}{2}$
 $C = \frac{10}$

Dilutions

Dilution - process of decreasing the concentration of a solution by adding more solvent (normally water).

Calculating new concentration after a dilution...

Start with 250. mL of a 0.15 mol/L solution. 100. mL of water is added to dilute the solution.

Which quantity is the same before and after the dilution?

$$\nabla = \nabla \times \nabla$$

$$\nabla = \nabla \times \nabla$$

$$V_{i} = 250.0 \text{ mL}$$
 $C_{i} = 0.15 \text{ mal/L}$
 $V_{i} C_{i} = V_{f} C_{f}$
 $C_{f} = 250. \text{mL} V_{i} C_{i} \text{Smd/L}$
 $C_{f} = 250. \text{mL} V_{i} C_{i} \text{Smd/L}$
 $C_{f} = 250. \text{mL} V_{i} C_{i} \text{Smd/L}$
 $C_{f} = 0.11 \text{ md/L}$

What would be the concentration of a solution after diluting 45.0 mL of 4.2 mol/L KOH to 250 mL?

Sample Problems

How much 0.20 mol/L glucose solution can be made from 50. mL of 0.50 mol/L glucose solution?

$$Vi=50.mL$$

$$ViCi=VFCF$$

$$Ci=0.50md/L$$

$$Vf=?$$

$$Ci=0.20md/L$$

$$V==(50.mL)(0.50md/L)$$

$$(0.20md/L)$$

$$V==130mL$$

Today's Assignment

Worksheet

p· 484 #12,13 p· 486 #21 p· 499 #52