

Allison wants to invest \$2000.00. His bank offers an investment option that earns compound interest at a rate of 1.75% per year compounded annually for 3 years.

Interest period	Investment value at beginning of period	Interest earned I = Prt	Investment value at end of period
1	\$2000	$2000 \times 0.0175 \times 1 = 35$	\$2035
2	\$2035	\$2035x0.0175x1= \$35.61	\$2070.61
3	\$2070.61	$2070.61 \times 0.0175 \times 1 = 36.24$	\$2106.85

Allison wants to invest \$2000.00. His bank offers an investment option that earns compound interest at a rate of 1.75% per year for 3 years.

10

	Interest period	Investment value at beginning of period	Interest earned I = Prt	Investment value at end of period
	1	\$2000	\$2000x0.0175x1= \$35	\$2035
	2	\$2035	\$2035x0.0175x1= \$35.61	\$2070.61
	3	\$2070.61	\$2070.61x0.0175x1=\$36.24	\$2106.85

22

Formula:

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

A = final value of the investment ...(principal + interest)

P = principal

r = annual interest rate

n = number of compounding periods in a year

t = term of the investment or loan in number of years

COMPOUND Interest

Allison wants to invest \$2000.00. Her bank offers an investment option that earns compound interest at a rate of 1.75% per year compounded annually for 3 years.

10

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

$$A = 2000 \left(1 + \frac{0.0175}{1} \right)^{(1)(10)}$$

$$A = 2000 (1 + 0.0175)^{10}$$

$$A = 2000 (1.0175)^{10}$$

$$A = 2000 (1.18944)$$

$$A = $2378.89$$

Calculate the final value of an initial investment of \$6000.00. Interest is paid at 4% per annum, compounded semi-annually, for three years.

A = final value of the investment ...(principal + interest)

P = principal

r = annual interest rate

n = number of compounding periods in a year

t = term of the investment or loan in number of years

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

$$A = 6000 \left(1 + \frac{0.04}{2} \right)^{(2)(3)}$$

$$A = 6000 (1 + 0.02)^{6}$$

$$A = 6000 (1.02)^{6}$$

$$A = 6000 (1.1262)$$

$$A = \$6756.98$$

Calculate the final value of an initial investment of \$8500.00. Interest is paid at 3.75% per annum, compounded semi-annually, for three years.

