Understanding Logarithms

Focus on...

- demonstrating that a logarithmic function is the inverse of an exponential function
- sketching the graph of $y = \log_c x$, c > 0, $c \ne 1$
- determining the characteristics of the graph of $y = \log_c x$, c > 0, $c \ne 1$
- · explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

Questions from Homework

(3) b)
$$\log_3 30 = 5$$
 $\log_3 (31) = -3$
 $\log_3 30 = 5$ $\log_3 (31) = -3$
 $\log_3 30 = 5$ $\log_3 (31) = -3$

(b) $\log_3 10 = 0.35$ or $\frac{1}{4}$

(c) $\log_3 (3) = 3 \times 1$
 $\log_3 (3) = 3 \times 1$
 $\log_3 (3) + 1 = 3 \times 1$
 $\log_3 (3) + 1 = 3 \times 1$
 $\log_3 (3) + 1 = 3 \times 1$
 $\log_3 (3) =$

General Properties of Logarithms:

If C > 0 and $C \neq 1$, then... (i) $\log_C 1 = 0$ (ii) $\log_C c^x = x$ (iii) $c^{\log_C x} = x$

Did You Know?

The input value for a logarithm is called an argument. For example, in the expression log₆ 1, the argument is 1.

(1)
$$\log_5 1 = 0$$
 (11) $\log_5 3 = 3$

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

$$\frac{\log_c MN = \log_c M + \log_c N}{Proof} = \frac{\log_c M + \log_c N}{\log_c M}$$

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$MN = (c^x)(c^y)$$

$$MN = c^{x+y}$$
 Apply the product law of powers.
$$\log_c MN = x + y$$
 Write in logarithmic form.
$$\log_c MN = \log_c M + \log_c N$$
 Substitute for x and y .

Quotient Law of Logarithms

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\frac{\log_c \frac{M}{N} = \log_c M - \log_c N}{Proof}$$
ex: $\log_3 80 - \log_3 5 = \log_3 \frac{80}{5}$

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$\frac{M}{N} = \frac{c^x}{c^y}$$

$$\frac{M}{N} = c^{x-y}$$
 Apply the quotient law of powers.

$$\log_c \frac{M}{N} = x - y$$
 Write in logarithmic form.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$
 Substitute for x and y.

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponent times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

Proof

Let $\log_c M = x$, where M and c are positive real numbers with $c \neq 1$.

Write the equation in exponential form as $M = c^x$.

Let P be a real number.

$$M=c^x$$
 $M^p=(c^x)^p$ $M^p=c^{x^p}$ Simplify the exponents. $\log_c M^p=xP$ Write in logarithmic form. $\log_c M^p=(\log_c M)P$ Substitute for x . $\log_c M^p=P\log_c M$

The laws of logarithms can be applied to logarithmic functions, expressions, and equations.

exi.
$$\log_{3} \sqrt[4]{27}$$

$$= \log_{3} (27)^{44}$$

$$= \frac{1}{4} \log_{3} 27$$

$$= \frac{1}{4} (3)$$

$$= \frac{3}{4}$$

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

$$\log_c MN = \log_c M + \log_c N$$

Quotient Law of Logarithms

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponen times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

Example 1

Use the Laws of Logarithms to Expand Expressions

Write each expression in terms of individual logarithms of x, y, and z.

- a) $\log_5 \frac{xy}{z}$
- **b)** $\log_7 \sqrt[3]{X}$
- c) $\log_{6} \frac{1}{X^{2}}$
- **d)** $\log \frac{X^3}{V\sqrt{Z}}$

a)
$$\log_5 \frac{xy}{z} = \log_5 x + \log_5 y - \log_5 z$$

b)
$$\log_7 \sqrt[3]{x} = \log_7 x$$
 = $\frac{1}{3} \log_7 x$

c)
$$\log_{6} \frac{1}{x^{3}} = \log_{6} 1 - \log_{6} x$$

= 0-3\log_{6} x

$$\frac{1}{\sqrt{3}}$$

$$= \log \left(\frac{\sqrt{3}}{\sqrt{3}} \right)$$

$$= \log x^3 - \log y - \log z^3$$

$$= 3\log x - \log y - \frac{1}{5} \log z$$

Example 2

Use the Laws of Logarithms to Evaluate Expressions

Use the laws of logarithms to simplify and evaluate each expression.

- a) $\log_6 8 + \log_6 9 \log_6 2$
- **b)** $\log_{7} 7\sqrt{7}$
- c) $2 \log_2 12 \left(\log_2 6 + \frac{1}{3} \log_2 27\right)$

a)
$$\log_6 8 + \log_6 9 - \log_6 3 = \log_6 (\frac{8.9}{3}) = \log_6 (36) = 3$$

b)
$$\log_{1}(1)^{3} = \log_{1}(1)^{3} = \frac{3}{3}$$

$$= \log_{3} 144 - (\log_{3} 6 + \log_{3} 3)$$

$$= \log_{3} 144 - \log_{3} 6 - \log_{3} 3$$

$$= \log_3\left(\frac{6.3}{6.3}\right)$$

Example 3

Use the Laws of Logarithms to Simplify Expressions

Write each expression as a single logarithm in simplest form. State the restrictions on the variable.

a)
$$\log_7 x^2 + \log_7 x - \frac{5 \log_7 x}{2}$$

b)
$$\log_5 (2x-2) - \log_5 (x^2 + 2x - 3)$$

a)
$$\log_{1} x^{3} + \log_{1} x - \log_{1} x^{3}$$

$$\log_{1} \left(\frac{x^{3} \cdot x}{x^{3}}\right) \qquad 3 - \frac{5}{3}$$

$$\log_{1} \left(\frac{x^{3} \cdot x}{x^{3}}\right) \qquad \frac{5}{3} - \frac{5}{3}$$

b)
$$\log_{5}(3x-3) - \log_{5}(x^{2}+3x-3)$$

$$\log_{5}\left(\frac{3x-3}{x^{2}+3x-3}\right)$$

$$\log_{5}\left(\frac{3(x-1)}{(x-1)(x+3)}\right)$$

$$\log_{5}\left(\frac{3}{x+3}\right)$$

For the original expression to be defined, both logarithmic terms must be defined.

$$2x-2>0$$
 $x^2+2x-3>0$ What other methods could $2x>2$ $(x+3)(x-1)>0$ you have used to solve this $x>1$ and $x<-3$ or $x>1$ quadratic inequality?

The conditions x > 1 and x < -3 or x > 1 are both satisfied when x > 1.

Hence, the variable x needs to be restricted to x > 1 for the original expression to be defined and then written as a single logarithm.

Therefore,
$$\log_5 (2x-2) - \log_5 (x^2 + 2x - 3) = \log_5 \frac{2}{x+3}, x > 1.$$

Key Ideas

• Let P be any real number, and M, N, and c be positive real numbers with $c \neq 1$. Then, the following laws of logarithms are valid.

Name	Law	Description
Product	$\log_c MN = \log_c M + \log_c N$	The logarithm of a product of numbers is the sum of the logarithms of the numbers.
Quotient	$\log_c \frac{M}{N} = \log_c M - \log_c N$	The logarithm of a quotient of numbers is the difference of the logarithms of the dividend and divisor.
Power	$\log_c M^p = P \log_c M$	The logarithm of a power of a number is the exponent times the logarithm of the number.

Many quantities in science are measured using a logarithmic scale. Two
commonly used logarithmic scales are the decibel scale and the pH scale.

Homework

Exercise 3

Do I really understand??...

- a) Express the following as a single logarithm... $2 \log_2 3^2 + \log_2 6 3 \log_2 3$
- b) Evaluate the following... $\log_2(32)^{\frac{1}{3}}$
- c) Express the following as a single logarithm... $\frac{1}{2} [(\log_5 a + 2\log_5 b) 3\log_5 c]$
- d) Express as a single logarithm in simplest form...

$$\frac{3}{4} \left[12 (\log_b x^2 - 2\log_b x) + 8\log_b \sqrt{x} - 4\log_b \frac{1}{x^7} \right]$$