Understanding Logarithms

Focus on...

- demonstrating that a logarithmic function is the inverse of an exponential function
- sketching the graph of $y = \log_c x$, c > 0, $c \ne 1$
- determining the characteristics of the graph of $y = \log_c x$, c > 0, $c \ne 1$
- · explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

Questions from Homework

(3) b)
$$\log_3 30 = 5$$
 $\log_3 (81) = -3$ $\log_3 30 = 5$ $\log_3 (81) = -3$ $\log_3 30 = 5$ $\log_3 30 = 5$ $\log_3 30 = -3$

$$\frac{\log_{9} 13}{\log_{9} 1} = 0.35 \text{ or } \frac{1}{9}$$

(a)
$$\frac{3^{3x-1}}{3} = \frac{5}{5}$$
 (exp frm)
$$\frac{\log_3(5)}{3} = \frac{3x+1}{5}$$

$$\frac{\log_3(5)}{3} + \frac{3}{5} = \frac{3x}{5}$$

$$\frac{\log_3(5)+1}{\log_3(5)+1} = X$$

g)
$$\log_3(\log_3 x) = 4$$
 ($\log_3 x$)

$$3^{6} = \times$$
 (Exp. form)

h)
$$10^{-8} = 3$$
 (Exp. form)

Base ons

h)
$$10^{5} = 3$$
 (Exp. form)

Base ans

 $\log_{10}(3) = 5^{\times}$ (Exp form)

ans

 $\log_{10}(3) = 5^{\times}$ (Exp form)

1

General Properties of Logarithms:

If C > 0 and $C \neq 1$, then... (i) $\log_C 1 = 0$ (ii) $\log_C c^x = x$ (iii) $c^{\log_C x} = x$

Did You Know?

The input value for a logarithm is called an argument. For example, in the expression log₆ 1, the argument is 1.

(1)
$$\log_5 1 = 0$$
 (11) $\log_5 3 = 3$

$$(iii) \gamma^{109} \gamma^{49} = 49$$

$$= \frac{10}{100} = 10$$

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

the logarithms of the numbers.
$$\log_2 16 + \log_2 2 = \log_2 (16.3)$$
 $\log_c MN = \log_c M + \log_c N$
 $= \log_3 30$
 $= 5$

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$MN = (c^x)(c^y)$$

$$MN = c^{x+y}$$
 Apply the product law of powers.
$$\log_c MN = x + y$$
 Write in logarithmic form.
$$\log_c MN = \log_c M + \log_c N$$
 Substitute for x and y .

Quotient Law of Logarithms

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

$$= \log_s 60 - \log_s 5 = \log_s (\frac{86}{5})$$

$$= \log_s 16$$

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$\frac{M}{N} = \frac{c^x}{c^y}$$

$$\frac{M}{N} = c^{x-y}$$

Apply the quotient law of powers.

$$\log_c \frac{M}{N} = x - y$$

Write in logarithmic form.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Substitute for *x* and *y*.

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponent times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

Proof

Let $\log_c M = x$, where M and c are positive real numbers with $c \neq 1$.

Write the equation in exponential form as $M = c^x$.

Let P be a real number.

$$M=c^x$$
 $M^p=(c^x)^p$ $M^p=c^{x^p}$ Simplify the exponents. $\log_c M^p=xP$ Write in logarithmic form. $\log_c M^p=(\log_c M)P$ Substitute for x . $\log_c M^p=P\log_c M$

The laws of logarithms can be applied to logarithmic functions, expressions, and equations.

ex.
$$\log_{3} \sqrt[4]{3}$$

$$= \log_{3} \sqrt[4]{3}$$

$$= \frac{1}{4} \sqrt{3}$$

$$= \frac{3}{4}$$

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

$$\log_c MN = \log_c M + \log_c N$$

Quotient Law of Logarithms

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponen times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

Example 1

Use the Laws of Logarithms to Expand Expressions

Write each expression in terms of individual logarithms of x, y, and z.

- a) $\log_5 \frac{xy}{z}$
- **b)** $\log_7 \sqrt[3]{X}$
- c) $\log_{6} \frac{1}{X^{2}}$
- **d)** $\log \frac{X^3}{y\sqrt{Z}}$

a)
$$\log_s \frac{xy}{z} = \log_s x + \log_s y - \log_s z$$

b)
$$\log_7 \sqrt[3]{x} = \log_7 x$$
 = $\frac{1}{3} \log_7 x$

c)
$$\log_6 \frac{1}{x^3} = \log_6 1 - \log_6 x$$

$$= 0 - 3\log_6 x$$

$$= -2\log_6 x$$

$$\frac{1}{2}$$
 $\frac{\sqrt{3}}{\sqrt{3}}$

=
$$\log \left(\frac{x^3}{x^3} \right)$$

$$= \log x^3 - \log y - \log^2 x^3$$

$$= 3\log x - \log y - \frac{1}{3} \log z$$

Example 2

Use the Laws of Logarithms to Evaluate Expressions

Use the laws of logarithms to simplify and evaluate each expression.

- a) $\log_6 8 + \log_6 9 \log_6 2$
- **b)** $\log_{7} 7\sqrt{7}$
- c) $2 \log_2 12 \left(\log_2 6 + \frac{1}{3} \log_2 27\right)$

a)
$$\log_6 8 + \log_6 9 - \log_6 3 = \log_6 (\frac{8.9}{3}) = \log_6 (36) = 3$$

b)
$$\log_{1} \sqrt{1} = \log_{1} \sqrt{1} = \log_{1} \sqrt{3} = \frac{3}{3}$$

$$= \log_{3} 144 - \log_{3} 6 - \log_{3} 3$$

$$= \log_3\left(\frac{6.3}{194}\right)$$

Example 3

-0

Use the Laws of Logarithms to Simplify Expressions

Write each expression as a single logarithm in simplest form. State the restrictions on the variable.

a)
$$\log_7 x^2 + \log_7 x - \frac{5 \log_7 x}{2}$$

b)
$$\log_5 (2x-2) - \log_5 (x^2 + 2x - 3)$$

a)
$$\log_{1} x^{3} + \log_{1} x + \log_{1} x - \log_{1} x^{3}$$

$$\log_{1} \left(\frac{x^{3} \cdot x}{x^{5/3}}\right) \rightarrow 3 - 5/3$$

b)
$$\log_{s}(3x-3) - \log_{s}(x^{2}+3x-3)$$
 $\log_{s}(\frac{3x-3}{x^{2}+3x-3}) + trinmical$
 $\log_{s}(\frac{3(x-1)}{x^{2}+3}) - 1 + 3 - 3$
 $\log_{s}(\frac{3}{x^{2}+3})$
 $\log_{s}(\frac{3}{x^{2}+3})$

For the original expression to be defined, both logarithmic terms must be defined.

$$2x-2>0$$
 $x^2+2x-3>0$ What other methods could $2x>2$ $(x+3)(x-1)>0$ you have used to solve this $x>1$ and $x<-3$ or $x>1$

The conditions x > 1 and x < -3 or x > 1 are both satisfied when x > 1.

Hence, the variable x needs to be restricted to x>1 for the original expression to be defined and then written as a single logarithm.

Therefore,
$$\log_5 (2x - 2) - \log_5 (x^2 + 2x - 3) = \log_5 \frac{2}{x + 3}, x > 1.$$

Key Ideas

• Let P be any real number, and M, N, and c be positive real numbers with $c \neq 1$. Then, the following laws of logarithms are valid.

Name	Law	Description
Product	$\log_c MN = \log_c M + \log_c N$	The logarithm of a product of numbers is the sum of the logarithms of the numbers.
Quotient	$\log_{c} \frac{M}{N} = \log_{c} M - \log_{c} N$	The logarithm of a quotient of numbers is the difference of the logarithms of the dividend and divisor.
Power	$\log_c M^p = P \log_c M$	The logarithm of a power of a number is the exponent times the logarithm of the number.

• Many quantities in science are measured using a logarithmic scale. Two commonly used logarithmic scales are the decibel scale and the pH scale.

Homework

Exercise 3

(a)
$$e^{192} - \log_4 3$$

 $\log_4 (\frac{192}{3})$
 $\log_4 (64) \rightarrow \log_4 64$
 $\log_4 (64) \rightarrow \log_4 64$

(3) a)
$$\log_{10} 13 + (\frac{1}{3}\log_{10} 7 - \log_{10} 3)$$

$$\log_{10} 13 + \log_{10} 17 - \log_{10} 3$$

$$\log_{10} (\frac{1317}{3})$$

$$\log_{10} (617) \longrightarrow \log_{10} (617)$$

For:
$$y = 5 \log_3(x+9) + 1$$
 $x - int(y=0)$
 $0 = 5 \log_3(x+9)(t)$
 $y = 5 \log_3(0+9) + 1$
 $y = 6 \log_3(0+9) + 1$

Do I really understand??...

- a) Express the following as a single logarithm... $2\log_2 3^2 + \log_2 6 3\log_2 3$
- b) Evaluate the following... $\log_2(32)^{\frac{1}{3}}$
- c) Express the following as a single logarithm... $\frac{1}{2} [(\log_5 a + 2\log_5 b) 3\log_5 c]$
- d) Express as a single logarithm in simplest form...

$$\frac{3}{4} \left[12 \left(\log_b x^2 - 2\log_b x \right) + 8\log_b \sqrt{x} - 4\log_b \frac{1}{x^7} \right]$$