Formation Reactions:

This reactions starts with elements only as reactants. The reactants will form compounds as products.

elements ⇒ compound

Ex.
$$C_{(s)} + 2H_{2(g)} \longrightarrow CH_{4(g)}$$

The molar enthalpy symbol for a formation reaction is H_f

Simple Decomposition Reactions:

This reaction starts as a compound, which decomposes into its elements.

(opposite of a formation reaction)

compound ⇒elements

Ex.
$$CH_{4(g)} --> C_{(s)} + 2H_{2(g)}$$
 $\Delta H_{5D} = -\Delta H_{5}$

The molar enthalpy symbol is H_{SD} .

Combustion Reactions:

The reaction of a substance with excess oxygen to produce an oxide.

Ex.
$$C_{(s)} + O_{2(g)} --> CO_{2(g)}$$

The molar enthalpy symbol is H_c

Molar Enthalpies

 $\mathbf{H}_{\mathbf{f}}$ - molar enthalpies of formation is the quantity of heat released or absorbed when one mole of a substance forms from its elements.

 $ightharpoonup H_c$ - molar enthalpies of combustion is the quantity of heat released or absorbed when one mole of a substance reacts with oxygen.

H₀ - standard molar enthalpy is the quantity of heat released or absorbed when one mole of a substance reacts at SATP

Enthalpy Change

ΔH_r - Enthalpy change is the quantity of heat released or absorbed when a reaction occurs. This may also be called "Heat of Reaction" or "Change in Heat".

⇒must know the number of moles of a substance reacting to determine the enthalpy change

Molar enthalpy may be determined from the enthalpy change as long as the number of moles (n) are known.

H_{fus} Hvap Hsolid Hoord

$$\Delta H_r = nH_r$$
 $Ex. 2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)}$
 $SO_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow 3SO_{3(g)}$
 $SO_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow 3SO_{3(g)}$

How do we find the change in enthalpy of $SO_{2(g)}$?? $\Delta H_{r} = nH_{r}$ $\Delta H_{r} = (2 \text{ mol})(-98.79 \text{ mol})$ $\Delta H_{r} = (1 \text{ mol})(-98.79 \text{ mol})$ $\Delta H_{r} = -197.58 \text{ kS}$

$$H_r = \Delta H_r / n$$

COMMUNICATING ENTHALPY CHANGES

Using ΔH_r notation:

- for chemical reactions not well known, the chemical equation must accompany the enthalpy change. The molar enthalpy of reactic (or change in enthalpy) follows the equation. For exothermic reactions the $\Delta H_r < 0$.

Ex.
$$Mg_{(s)} + 1/2 O_{2(g)} = > MgO_{(s)} \Delta H_r = -601.6kJ$$

The Enthalpy Change (ΔH_r) may be included as a term in the balanced equation:

(i) In endothermic reactions - energy is reported as a reactant and is transformed in the reaction.

Ex.
$$H_2O_{(l)} + 285.8kJ \Rightarrow H_{2(g)} + 1/2O_{2(g)}$$

(ii) In exothermic reactions - energy is reported as a product since it is being produced. $Mg(s) + \frac{1}{2}O_{2(s)} - MgO_{s}$ $Mg = -601.6 \times 3$

Ex.
$$Mg_{(s)} + 1/2 O_{2(g)} \Rightarrow MgO_{(s)} + 601.6kJ$$

POTENTIAL ENERGY DIAGRAMS

- may be used to express enthalpy change (ΔH_r)
- shows the potential energy of the reactants and products of a chemical reaction.
- shows the difference between the initial and final energies as the enthalpy change. (ΔH_r)

see Fig 11-8 p 373 (also 11-15,16,17)

For each of the following reactions:

- (a) rewrite the equation including the enthalpy change as a term
- (b) draw a potential energy diagram

(i)
$$C_6H_{12}O_{6(s)} + 6O_{2(g)} - 6CO_{2(g)} + 6H_2O_{(l)} \Delta H^0 = -2802.7kJ$$

(ii) $C_{2(g)} - C_{2(g)} - C_{2(g)} + 6H_2O_{(l)} \Delta H^0 = -2802.7kJ$

(ii) $C_{2(g)} - C_{2(g)} - C_{2($