Day 37 - Logarithmic & Exponential Equations continued after.notebook November 05, 2015

Questions from Homework
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Do I really understand??...

a) Express the following as a single logarithm .. 2log, 3* +log, 6 - 3log, 3
1
b) Evaluate the following. .. log, (32)°

¢) Express the following as a single logarithm... ~ [{ logsa+ 2log: b)— 3logs c:]

-

d) Express as a single logarithm in simplest form...

% 12ilog, x* - 2log, x l+8log, +x —4log, 1 j|
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2log, 37 +log, 6-3log, 3
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Logarithmic and Exponential
Equations

Focus on...

solving a logarithmic equation and verifying the solution

explaining why a value obtained in solving a logarithmic equation may be extraneous
solving an exponential equation in which the bases are not powers of one another
solving a problem that involves exponential growth or decay

solving a problem that involves the application of exponential equations to loans,
mortgages, and investments

solving a problem by modelling a situation with an exponential or logarithmic
equation
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General Properties of Logarithms:

Did You Know?

IfC>0and C=1, then... o
The input value

(1) lDEC | =0 for a logarithm is
= called an argument.
. x For example, in the
(ll) 102 C C" =X expression log, 1,
‘ = the argument is 1.

log. x

(111) ¢ =X
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Example 1

Solve Logarithmic Equations

Solve.
a) log (2x — 1) = log_ 11

€) log, (x+ 3)*=4

c) \\s&(&x—b = ‘\33}\\
ey
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b) log (8x + 4) =1+ log (x + 1)
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Example 2
Solve Exponential Equations Using Logarithms

Solve. Round vour answers to two decimal places.
w'

a) 4* = 605
b) 8(3%*) = 568
c} 42_\'—‘] — 3.\'+2

» 4 =605 b)%%%x)—_ f%L
@: \0365) 58x =]l
,ﬁ o) [\\5® = log 1\
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Example 4

Solve a Problem Involving Exponential Growth and Decay

When an animal dies, the amount
of radioactive carbon-14 (C-14) in its
bones decreases. Archaeologists use
this fact to determine the age of a
fossil based on the amount of C-14
remaining,.

The half-life of C-14 is 5730 years.

Head-Smashed-In Buffalo Jump in
southwestern Alberta is recognized
as the best example of a buffalo jump
in North America. The oldest bones
unearthed at the site had 49.5% of
the C-14 left. How old were the bones when they were found?

Buffalo skull display, Head-Smashed-In buffalo
Jump Visitor Centre, near Fort McLeod, Alberta



Day 37 - Logarithmic & Exponential Equations continued after.notebook November 05, 2015

Solution

Carbon-14 decays by one half for each 5730-year interval. The mass, m,

I
remaining at time ¢ can be found using the relationship ml(t) = mn(%)““,
where m is the original mass.

Since 49.5% of the C-14 remains after { years, substitute 0.495m,_ for m({)

in the formula mlt) = mn(%)?lﬁﬂ.

0.495m = mu(%)srzn Instead of taking the common
i logarithm of both sides, you
0.495 = 0.55m0 ¢ could have converted from
log 0.495 = log 0.55730 exponential form to logarithmic

fiorm. Try this. Which approach do

t
log 0.495 = ——— log 0.5 you prefer? Why?

2730
5730 log 0.495

log 0.5
bdl3 = ¢

The oldest buffalo bones found at Head-Smashed-In Buffalo Jump date to
about 5813 years ago. The site has been used for at least 6000 years.
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2. Cesium-137 is an exceptionally dangerous radioactive isotope with a |

half life of 30 years. If you have been given a sample of 1600 m...
Gwen Y ~Tatial Aot @)ﬂsaew
Tortidd ‘\Mle( -0 ( \ *éo
Tse = A of05 “\’»‘600 ’5)

exe = fr_
20

a) Write an equation which expresses the mass of Cesium-137 (in mg), as
an exponential function of the elapsed time, 7 (in years).

C
m: \Em(y&\/%

—

b) How long will it take for your sample of Cesium-137 to decay to 100 mg?
Vo
M= \e0 (o 53
30
100 = 166005)

M= oo 1600 S

=< 0.065= QoY
\03(0 .08353 = '\/0«3(0\ \Q ‘H‘l \ o{')

\03<o.o@6) _ ;;-5 ly©5) -3

Cwen -

Wox(0.069) =

3(0 ) ;

¢) How much Cesium-137 (accurate to the nearest hundredth) will
remain after 10 years?

Cwen. M= e00(0 63
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Key Ideas

@ When solving a logarithmic equation algebraically, start by applying the
laws of logarithms to express one side or both sides of the equation as a
single logarithm.
e Some useful properties are listed below, where ¢, L, B > 0 and ¢ # 1.
= Iflog L= log R, thenL = A.
= The equation log_ L = R can be written with logarithms on both sides of the
equation as log_L = log_c".
= The equation log, L = R can be written in exponential form as L = ¢".
= The logarithm of zero or a negative number is undefined. To identify whether

a root is extraneous, substitute the root into the original equation and check
whether all of the logarithms are defined.

@ You can solve an exponential equation algebraically by taking logarithms of
both sides of the equation. If L = R, then log, L = log, R, where ¢, L, R > 0 and
¢ # 1. Then, apply the power law for logarithms to solve for an unknown.

@ You can solve an exponential equation or a logarithmic equation using
graphical methods.

@ Many real-world situations can be modelled with an exponential or a
logarithmic equation. A general model for many problems involving
exponential growth or decay is

final quantity = initial quantity x (change factor)mmber of changes
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e Let P be any real number, and M, N, and c be positive real numbers with ¢ # 1.
Then, the following laws of logarithms are valid.

Name Law Description

The logarithm of a product of numbers is the sum of the
logarithms of the numbers.

Product  log, MN=log, M + log_N

. M The logarithm of a quotient of numbers is the difference
uotient log + =log M — log N
Q BN B e of the logarithms of the dividend and divisor.
The logarithm of a power of a number is the exponent

P _
Power log M"= Plog M times the logarithm of the number.

e Many quantities in science are measured using a logarithmic scale. Two
commonly used logarithmic scales are the decibel scale and the pH scale.

11
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Homework

Page 412 #1, 2,4, 5,7, 8,11, 15
Chapter 8 Review: #1-14, 18-20, and 22 (Rage o)

12
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8.4 Logarithmic and Exponential Equations,
pages 412 to 415

1.
2.
3.

10.
11.

12.
13.
14.
15.
16.
17.
18.
18.

20.

21.
22.

a) 1000 b) 14 g 3 d) 108

a) 1.61 b) 10.38 ¢ 4.13 d) 0.94

No, since log, (x — 8) and log, (x — 6) are not defined
when x = 5.

. a) x = 0 is extraneous.

b) Both roots are extraneous.
¢} x = —6 is extraneous.
d) x =1 is extraneous.

.a) x=48 b) x=25 ) x=96 d x=9

. a) Rubina subtracted the contents of the log when she

should have divided them. The solution should be
log, (2;:_'" 11 ) =log 5
2x+1=5x-1)
1+5=5x—-2x
b= 3x
x=2

b) Ahmed incorrectly concluded that there was no
solution. The solution is x = 0.

) Jennifer incorrectly eliminated the log in the
third line. The solution, from the third line on,
should be

x[x+2)=27
X 4+2x—8=10
(x—2)x+4)=0
So,x=2o0rx=—4.
Since x = 0, the solution is x = 2.

a) 0.65 b) —0.43 c) 81.37 d) 4.85
. a) no solution (x = —3 not possible)
b) x=10 «¢) x=4 d x=2 e) x=-—484
. a) about 2.64 pc b) about 8.61 light years
64 kg
a) 10 000 by 3.5%

¢) approximately 20.1 years
a) 248 Earth years b) 228 million kilometres

a) 2 years b) 44 days ¢} 20.5 years
30 years

approximately 9550 years

8 days

34.0m

X= 4.5, V= 0.5

a) The first line is not true.

b) To go from line 4 to line 5, you are dividing by
a negative quantity, so the inequality sign must

change direction. ]

a)l x =100 b) x= 55100 0 x=1,100
a) x=16 by x=a
x=-52,4

November 05, 2015
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