For each of the following reactions:

- (a) rewrite the equation including the enthalpy change as a term
- (b) draw a potential energy diagram

(i)
$$C_6H_{12}O_{6(s)} + 6O_{2(g)} \longrightarrow 6CO_{2(g)} + 6H_2O_{(l)} \qquad \Delta H^0 = -2802.7kJ$$

For the following reactions:

- (a) rewrite the equation including the enthalpy change as a term
- (b) draw a potential energy diagram

(ii)
$$H_2O_{(g)} \longrightarrow H_{2(g)} + \frac{10}{2}O_{2(g)}$$

 Δ Ho = 241.8 kJ

Predicting Energy Changes using Hess's Law

Hess' Law - (Heat of Summation)

- allows for the determination of the enthalpy change of a reaction with direct use of calorimetry.

Rules:

- if a chemical equation is reversed, then the sign of the ΔH_r changes
- if the coefficients of a chemical equation are altered by multiplying or dividing by a constant factor, then the ΔH_r is altered in the same way

Ex.
$$C_{(s)} + O_{2(g)} \Rightarrow CO_{2(g)}$$

$$\triangle H = -393.5 \text{ kJ}$$

$$2C_{(s)} + 2O_{2(g)} \rightarrow 2CO_{2(g)}$$

Example

$$H_2O(g) + C(s) \rightarrow CO(g) + H_2(g)$$

 $\Delta H = ?$

Steps (found using calorimetry):

$$H_2(g) + 1/2 O_2(g) \rightarrow H_2O(g) \Delta H_1 = -242.0 \text{ k}$$

② 200 (g) → 2 C (s) +
$$\bigcirc_2$$
 (g) \triangle H_r = +221.0 k.

$$\frac{\cancel{\text{Rev2}} \div 2}{\cancel{\text{A}} \quad \cancel{\text{C}}_{(5)} + \cancel{\text{2}} \quad \cancel{\text{C}}_{(9)} \longrightarrow \cancel{\text{C}}_{(9)}}$$

Calculate the heat released by the burning of sulfur in oxygen given the following steps:

$$2S(s)$$
 + $3O_2(g)$ \rightarrow $2SO_3(g)$ $\Delta H = ?$

Evidence:

Step 1 (1)
$$S(s) + O_2(g) \rightarrow SO_2(g) \land H = 297 \text{MJ}$$

Step 2 (2) $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) \land H = -198 \text{MJ}$

(3) $2S(s) + 2O_{2(s)} \rightarrow 2SO_{2(s)}$

(3) $2S(s) + 3O_{2(s)} \rightarrow 2SO_{3(s)}$

(4) $4S(s) + 3O_{2(s)} \rightarrow 2SO_{3(s)}$

(5) $4S(s) + 3O_{2(s)} \rightarrow 2SO_{3(s)}$

(6) $4S(s) + 3O_{2(s)} \rightarrow 2SO_{3(s)}$

Worksheet