

Let's Review:

- Simplifying Radicals
- Pythagoras Theorem
- Basic Trigonometric Properties

Radical Review

Simplify

Radicals

(6)
$$2\sqrt{3} \cdot 5\sqrt{3} = 10\sqrt{9} = 10(3) = 30$$

Rationalizing the Denominator

(Get rid of the radical)

$$\frac{5.5}{\sqrt{2}.5} = \frac{55}{4} = \frac{55}{56} = \frac{8\sqrt{2} \cdot \sqrt{8}}{6\sqrt{8} \cdot \sqrt{8}} = \frac{856}{666}$$

$$\frac{8\sqrt{2} \cdot \sqrt{8}}{6\sqrt{8} \cdot \sqrt{8}} = \frac{8\sqrt{6}}{6\sqrt{8}} = \frac{8\sqrt{6}}{6\sqrt{8}}$$

$$= \frac{8\sqrt{4}}{6\sqrt{8}}$$

Think Conjugates!

(onjugate
$$1+55 \rightarrow 1-55$$

 $1-55 \rightarrow 1+55$
 $-1+53 \rightarrow -1-53$

Think Pythagorean Theorem!

Determine the length of the idicated side! (35)(35) = 914 - 9(3) = 18

$$(39)^{2} + (39)^{2} = 0$$

$$23 = 3$$

$$\sqrt{23} = 0$$

Trigonometric Ratios

Homework

$$\sin \theta = \frac{10}{2} = \frac{9}{1}$$

$$\cos \Theta = \frac{5\sqrt{3}}{10} = \frac{1\sqrt{3}}{3}$$

$$a^{3}+b^{3}=c^{3}$$
 $(5)^{3}+b^{3}=(10)^{3}$
 $(5)^{4}b^{3}=100$
 $b^{2}=75$
 $b=\sqrt{75}$
 $b=\sqrt{5.5.3}$
 $b=5\sqrt{3}$

Trig&3SpaceCourseOutline.doc