Understanding Logarithms

Focus on...

- demonstrating that a logarithmic function is the <u>inverse</u> of an exponential function
- sketching the graph of $y = \log_c x$, c > 0, $c \ne 1$
- determining the characteristics of the graph of $y = \log_c x$, c > 0, $c \ne 1$
- · explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

exponental

For the exponential function $y = c^x$, the inverse is $x = c^y$. This inverse is also a function and is called a **logarithmic function**. It is written as $y = \log_c x$, where c is a positive number other than 1. e (ogarithmic

Logarithmic Form

Exponential Form

Since our number system is based on powers of 10, logarithms with base 10 are widely used and are called **common logarithms**. When you write a common logarithm, you do not need to write the base. For example, $\log 3$ means $\log_{10} 3$. log. 150 = log 150

logarithmic function

 a function of the form * an exponent $y = \log_{c} x$, where c > 0 and $c \neq 1$, that is the inverse of the exponential function $y = c^x$

logarithm

- - in $x = c^y$, y is called the logarithm to base c of x

common logarithm

 a logarithm with base 10

Write each of the following in logarithmic form

Logarithmic Form

Exponential Form

Write each of the following in exponential form

a)
$$\log_4 16 = 2$$
Base
b) $\log_2 \left(\frac{1}{32}\right) = -5$
c) $\log 65 = 1.8129$

$$\frac{3}{4} = 16$$
 $\frac{3}{30}$ $\frac{10^{1.8139}}{30} = 65$

Example 1

Evaluating a Logarithm

Evaluate.

a)
$$\log_7 49 = 3$$

b)
$$\log_{6} 1 = 0$$

c)
$$\log 0.001 = -3$$
 d) $\log_2 \sqrt{8} = 1.5$

$$\frac{\log 1}{\log 6} = 0$$

$$\frac{\log 0.001}{\log 10} = -3$$
 $\frac{\log 58}{\log 9} = 1.5$

$$X = \log_7 49$$

$$10^{\times} = 0.001$$
 $3^{\times} = \sqrt{8}$

$$A_{\mathbf{x}} = A_{\mathbf{y}}$$

$$P_{\mathbf{x}} = P_{\mathbf{x}}$$

$$16_{x} = 10_{3}$$
 $9_{x} = 8_{3}$

$$x = 0$$

$$9^{x} = (\frac{3}{2})^{x}$$

$$X = 9$$

$$\left[\log 6.001 = 3 \right] \lambda^{x} = \lambda^{3/3}$$

$$\lambda = \lambda^{3/5}$$

Example 2

Determine an Unknown in an Expression in Logarithmic Form

Determine the value of x. (convert to exponential term)

- a) $\log_5 x = -3$
- **b)** $\log_x 36 = 2$
- c) $\log_{64} x = \frac{2}{3}$

a)
$$\log_5 x = -3 (\log_5 x = n)$$

$$5^{-3} = x (\exp_5 x = n)$$

$$\left(\frac{1}{5}\right) = \times$$

$$\sqrt{\frac{192}{192}} = \chi$$

$$\chi^{3} = 36$$
 (exp. form)

$$X = \pm 6$$

$$X = 6$$

c)
$$\log_{64} X = \frac{3}{3} (\log 5 \text{ form})$$

 $64 = X (\exp 5 \text{ form})$

$$\Theta = X$$
 (exp. form)

$$\sqrt{6-x}$$

Exponential Function (Inverse)

Logarithmic Function

hilt; vous

Example 3

Graph the Inverse of an Exponential Function

- a) State the inverse of $f(x) = 3^x$.
- **b)** Sketch the graph of the inverse. Identify the following characteristics of the inverse graph:
 - · the domain and range
 - \bullet the x-intercept, if it exists
 - \bullet the *y*-intercept, if it exists
 - · the equations of any asymptotes

Solution

- a) The inverse of $y = f(x) = 3^x$ is or, expressed in logarithmic form, Since the inverse is a function, it can be written in function that $y = \log_3 x$ is a function?
- **b)** Set up tables of values for both the exponential function, f(x), and its inverse, $f^{-1}(x)$. Plot the points and join them with a smooth curve.

$f(x) = 3^x$		
X	У	
-3		
-2		
-1		
0		
1		
2		
3		

$f^{-1}(x) = \log_3 x$	
X	У
2	

The graph of the inverse, $f^{-1}(x) = \log_3 x$, is a reflection of the graph

of $f(x) = 3^x$ about the line y = x. For $f^{-1}(x) = \log_3 x$,

- the domain is and the range is
- \bullet the x-intercept is
- \bullet there is no y-intercept
- the vertical asymptote, the axis, has equation there is no asymptote

How do the characteristics of $f^{-1}(x) = \log_3 x$ compare to the characteristics of $f(x) = 3^x$?

Key Ideas

- A logarithm is an exponent.
- Equations in exponential form can be written in logarithmic form and vice versa.

Exponential Form Logarithmic Form $x = c^y$ $y = \log_c x$

- The inverse of the exponential function $y = c^x$, c > 0, $c \ne 1$, is $x = c^y$ or, in logarithmic form, $y = \log_c x$. Conversely, the inverse of the logarithmic function $y = \log_c x$, c > 0, $c \ne 1$, is $x = \log_c y$ or, in exponential form, $y = c^x$.
- The graphs of an exponential function and its inverse logarithmic function are reflections of each other in the line y = x, as shown.
- For the logarithmic function $y = \log_c x$, c > 0, $c \neq 1$,
 - the domain is $\{x \mid x > 0, x \in R\}$
 - the range is $\{y \mid y \in R\}$
 - the x-intercept is 1
 - the vertical asymptote is x = 0, or the *y*-axis

 A common logarithm has base 10. It is not necessary to write the base for common logarithms:

$$\log_{10} x = \log x$$

Homework

#1-5, 8, 10, 12, 13, 17 on page 380

8.1 Understanding Logarithms, pages 380 to 382

- **2. a)** $\log_{12} 144 = 2$
 - c) $\log_{10} 0.000 \ 01 = -5$
- 3. a) $5^2 = 25$
 - c) $10^6 = 1000000$
- **4. a)** 3
- **b)** 0
- **5.** a = 4; b = 5

- ii) $y = \log_2 x$
- iii) domain $\{x \mid x > 0, x \in R\},\$ range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote x = 0
- ii) $y = \log_1 x$
- iii) domain $\{x\mid x>0,\,x\in R\},$ range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote
- **b)** $\log_8 2 = \frac{1}{3}$
- $\log_{7}(y+3)=2x$
- $8^{\frac{2}{3}} = 4$
- $11^y = x + 3$
- d) -3

8. a) $y = \log_5 x$

domain $\{x \mid x > 0, x \in R\}$, range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote x = 0

d) 8

- **10.** They are reflections of each other in the line y = x.
- 11. a) They have the exact same shape.
 - One of them is increasing and the other is decreasing.
- 12. a) 216
- **b)** 81 **b)** 6
- 13. a) 7
 - b)
- 14. a) 0 **15**. −1
- **16.** 16
- **17.** a) $t = \log_{1.1} N$
- b) 145 days

c) 64

- 18. The larger asteroid had a relative risk that was 1479 times as dangerous.
- 19. 1000 times as great
- **20.** 5
- **21.** m = 14, n = 13
- **22.** 4n
- **23.** $y = 3^{2^x}$