Chemical Bonding

Valence electrons

electrons in the highest occupied energy level of an element's atoms.

- determines the chemical properties of an element
- only electrons used in chemical bonds
- for a representative element, the number of valence electrons corresponds to the group number

Electron dot structure

diagrams showing the valence electrons as dots

Table 7.1								
Electron Dot Structure of Some Group A Elements								
	Group							
Period	1A	2A	3 A	4A	5 A	6 A	7A	8 A
1	H.							He:
2	Li-	·Be·	·B·	Ċ	Ņ	Ö	· E	Ne
3	Na [.]	·Mg·	Αl·	Si	. <mark>P</mark> .	S	CI	:Ar
4	K.	·Ca·	Ga	Ge	As	Se	Br	:Kr:

Octet Rule

To form compounds, atoms usually achieve the electron configuration of a noble gas.

At the highest occupied energy level: nsnp6

Formation of Cations

Cations lose valence electrons to form positively charged ions

Na 1s²2s²2p⁶3s¹
$$\xrightarrow{-e^-}$$
 Na⁺ 1s²2s²2p⁶

Ionization:

Na
$$\longrightarrow$$
 Na⁺ + e⁻
// IO 1

Transition Metals will attempt to form a pseudo noble-gas configuration.

Cu(I)

Formation of Anions Anions gain electrons to produce a negatively charged ion.

Cl
$$1s^22s^22p^63s^23p^5$$
 $\xrightarrow{\text{+ e}}$ Cl- $1s^22s^22p^63s^23p^6$

Ionization:

$$\begin{array}{cccc} CI & + & e^{-} & \longrightarrow & CI & ^{-} \\ 17 & & 1 & & 18 \end{array}$$

Crystal Structure of Ionic Solids

NaCI Not Ci-

Not CI-CI-Not Not CI-

(a(1) (a²+ (1) (1)

Homework

p. 193 #3-11