p. 203 #23-29

Electronegativity

Electronegativity

The ability of an atom in a compound to attract electrons

Trends

- Within a group, electronegativity decreases from top to bottom
- Within a period, electronegativity increases from left to right

Ex. F

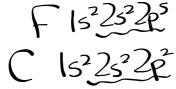

$$H - CI \Rightarrow H : CI$$
 $21 = 3.0$
 $C - F$
 $2.5 = 4.0$
 $C : F$
 $C : S$
 $25 = 2.5$

Table 6.2 Electronegativity Values for Selected Elements						
Li	Be	B	C	N	O	F
1.0	1.5	2.0	2.5	3.0	3.5	4.0
Na	Mg	AI	Si	P	S	CI
0.9	1.2	1.5	1.8	2.1	2.5	3.0
K	Ca	Ga	Ge	As	Se	Br
0.8	1.0	1.6	1.8	2.0	2.4	2.8
Rb	Sr	In	Sn	Sb	Te	I
0.8	1.0	1.7	1.8	1.9	2.1	2.5
Cs 0.7	Ba 0.9	TI 1.8	Рb 1.9	Bi 1.9		

Covalent Bond

Recall that a **covalent bond** is a shared pair of electrons between two nonmetal atoms.

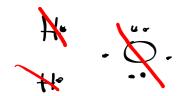
- Electrons are attracted to the positive nuclei
- Each atom wants to reach the electron configuration of a noble gas (ns²np6 Octet Rule)

Single Covalent Bond

Two atoms held together by sharing a pair of electrons

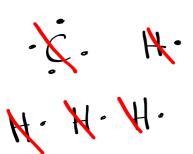
Molecular Formula

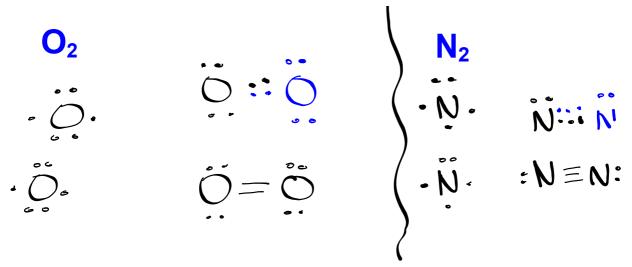
 F_2


Electron Dot Structure

Structural Formula

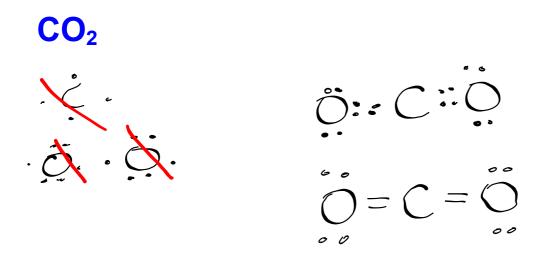
Lone pair (unshared pair)


A pair of valence electrons not shared between atoms


H_2O

CH₄

- one of carbon's 2s electrons is promoted to the 2p orbital:



Double covalent bond

Two shared pairs of electrons

Triple covalent bond

Three shared pairs of electrons

Homework

p. 220 #7, 8