VSEPR Theory

Valence-Shell Electron-Pair Repulsion Theory

Repulsion between electron pairs causes molecular shapes to adjust so that the valence-electron pairs are as far apart as possible.

Ex. CH₄

tetrahedral angle (109.5)

Ex. NH₃

Lone pairs (unshared pairs) also affect the shapes of molecules.

VSEPR

Ex. CO₂

Hybridization Involving Single Bonds

In <u>hybridization</u> atomic orbitals mix to form the same total number of equivalent hybrid orbitals.

Ex. CH₄

The one 2s orbital and three 2p orbitals of a carbon atom n ix to form four sp^3 hybrid orbitals.

CHy
$$2p 1 1 1 08$$

$$2s 1 0$$

$$15 11$$
C

H

H

C: H

H

ATOMIC ORBITALS
$$S+ p_x + p_y + p_x \longrightarrow Sp^3 + sp^3 + sp^3 + sp^3$$

$$4 \sigma bonds$$

Hybridization Involving Double Bonds

Ex. C_2H_4

The one 2s orbital and two 2p orbitals of each carbon atom mix to form three sp^2 hybrid orbitals.

Two of the *sp*² orbitals overlap with the *1s* hydrogen orbital to form carbon-hydrogen sigma bonds.

The third sp^2 orbital overlaps with an sp^2 orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding *2p* orbitals overlap side-by-side to form a carbon-carbon pi bond.

C2Hy

H

C::C

H

A.O.

$$S+px+pz$$
 $\Rightarrow p^2+sp^2+sp^2$
 $\Rightarrow pz$

Ar

(leftorar p)