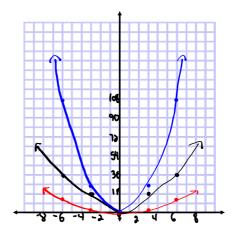
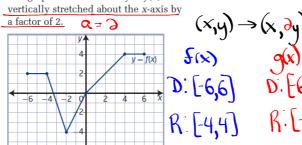
Questions from Homework

2. a) Copy and complete the table of values for the given functions.

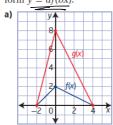
x	$f(x) = x^2$	g(x) = 3f(x)	$h(x) = \frac{1}{3}f(x)$
-6	36	108	l9
-3	9	27	_3
0	0	0	ő
3	9	27	3
6	36	108	- <u>1</u>

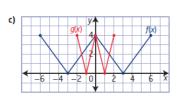


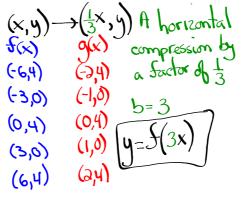
6. The graph of the function y = f(x) is



7. Describe the transformation that must be applied to the graph of f(x) to obtain the graph of g(x). Then, determine the equation of g(x) in the form y = af(bx).







Warm-Up...

Given that (-2, 5) is a point on the graph of y = f(x), determine the coordinates of this point once the following transformations are applied...

(1)
$$y = 3f(x)$$
 $a = 3 \rightarrow \text{vertical stretch}$

by a sactor of 3

 $(x,y) \rightarrow (x,3y)$
 $(-2,5) \rightarrow (-3,15)$

(3)
$$y=4f\left[\frac{1}{2}(x+5)\right]-\frac{3}{4}$$
 $a=4$ vertical stretch
by a factor of 4

 $b=1$ horizontal stretch
by a factor of 3

 $h=-5$ translated 5

units left

 $K=-3$ translated 3

units down

 $(x,y) \rightarrow (x-5,4y-3)$
 $(-2,5) \rightarrow (-9,17)$

(2)
$$y = f\left(-\frac{1}{3}x\right)$$
 $b = -\frac{1}{3}$ horizontal stretch

by a factor of 3 d-
a horizontal reflection
in the y-axis

(x,y) \rightarrow (-3x,y)

(-2,5) (6,5)

(4) $y-5=-2f(-2x+6)$
 $y = -3f(-2x+6) + 5$
 $y = -3f(-2x+6) + 5$

Transformations:

2. The function y = f(x) is transformed to the function g(x) = -3f(4x - 16) - 10. Copy and complete the following statements by filling in the blanks.

The function f(x) is transformed to the function g(x) by a horizontal stretch about the \square by a factor of \square . It is vertically stretched about the \square by a factor of \square . It is reflected in the \square , and then translated \square units to the right and \square units down.

$$g(x) = -35(4x-16)-10$$

$$g(x) = -35[4(x-4)]-10$$

$$a = -3$$

$$b = 4$$

$$h = 4$$

$$k = -10$$

- as y-axis
- c) ____
- b ____
- ٧) ____
- 5) ____
 - 9) _____

Summary of Transformations...

Transformations of the graphs of functions		
f(x) + k	shift $f(x)$ up (k units	
f(x)-&	shift $f(x)$ down kunits	
$f(x+\mathbf{h})$	shift $f(x)$ left hunits	
f(x - h)	shift $f(x)$ right b units	
f(-x)	reflect $f(x)$ about the y-axis	
-f(x)	reflect $f(x)$ about the x-axis	
a f(x)	When $0 < a < 1$ – vertical shrinking of $f(x)$ When $a > 1$ – vertical stretching of $f(x)$ Multiply the y values by a	
$f(\mathbf{b}x)$	When $0 < b < 1$ – horizontal stretching of $f(x)$ When $b > 1$ – horizontal shrinking of $f(x)$ Divide the x values by b	

Transformations:

$$y = f(x)$$
 $y = af(\underline{b}(x - \underline{h})) + \underline{k}$

Mapping Rule:

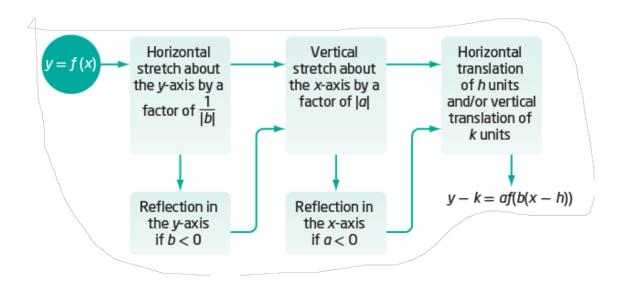
$$(x,y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$$

Important note for sketching...

Transformations should be applied in following order:

- 1. Reflections
- 2. Stretches
- 3. Translations

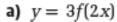
Remember....RST



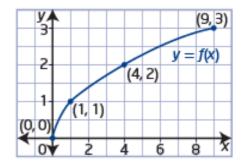
Example 1

Graph a Transformed Function

Describe the combination of transformations that must be applied to the function y = f(x) to obtain the transformed function. Sketch the graph, showing each step of the transformation.

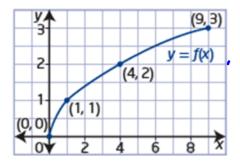


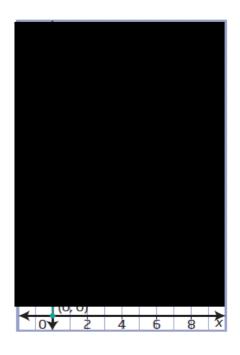
b)
$$y = f(3x + 6)$$



a)
$$y = 3f(2x)$$

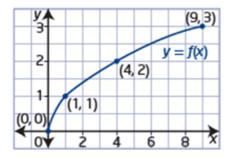
The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{2}$ and then vertically stretched about the x-axis by a factor of 3.





b)
$$y = f(3x + 6)$$

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{3}$ and then horizontally translated 2 units to the left.



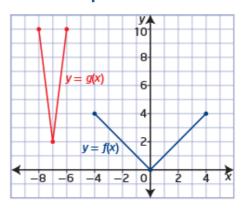
Homework

Page 38 # 3-6

Example 3

Write the Equation of a Transformed Function Graph

The graph of the function y = g(x) represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form y = af(b(x - h)) + k. Explain your answer.



Solution

Locate key points on the graph of f(x) and their image points on the graph of g(x).

$$(-4, 4) \rightarrow (-8, 10)$$

$$(0, 0) \rightarrow (-7, 2)$$

$$(4, 4) \rightarrow (-6, 10)$$

The equation of the transformed function is

How could you use the mapping $(x, y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$ to verify this equation?

17. The graph of the function y = 2x² + x + 1 is stretched vertically about the x-axis by a factor of 2, stretched horizontally about the y-axis by a factor of ¹/₃, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.

is stretched vertically about the *x*-axis by a factor of 2. stretched horizontally about the *y*-axis by a factor of $\frac{1}{3}$, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.