Warm Up

CH₂CH₃

$$-\frac{1}{2} = \frac{1}{3} + \frac{1}{5} + \frac{1}{6} + \frac{1}{3} = \frac{1}{3} + \frac{1}{5} + \frac{1}{6} + \frac{1}{3} = \frac{1}{3} + \frac{1}{5} + \frac{1}{6} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{$$

b) <u>E</u>

cyclopentene

C) CH₃
CH₃
CH₃
CH₃

dimethyl-1-butyne

Multiple Multiple Bonds

If there is more than one multiple bond in an organic compound, the name of the compound is changed to a _____diene, with the placing of the double bonds indicated at the beginning of the parent name.

dimethyl-1,3-butadiene

$$CH_3$$
 I
 $CH_2 = C - C = CH_2$
 I
 CH_3

Cyclopentene

Worksheet 46

Aromatic Compounds

Historically aromatic compounds were organic compounds with an odour. Today aromatic compounds are defined as benzene (C_6H_6) and all carbon compounds that contain benzene-like structures.

Ex.

Although the molecular formula for benzene suggests 3 double bonds between three single bonds, empirical evidence shows:

- (i) the ring is relatively unreactive we know multiple bonds are reactive
- (ii) The C--C bonds are of equal length and strength [EMPIRICAL EVIDENCE DOES NOT MATCH THEORY]

The evidence can only be explained if the pi electrons are delocalized (do not stay with any one carbon) and circle in a donut shaped cloud above and below the plane of the sp² C-C bonds.

think multiple bonds

