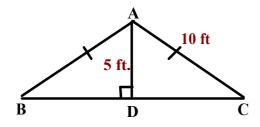

Warm Up


C =

In isosceles $\triangle ABC$, what is the length of BC? Write your answer as a mixed radical.

$$1\sqrt{15} \times 2$$

= $2\sqrt{75}$

In ABD Find \overline{BD}

$$a^2 + b^2 = c^2$$
 Rearrange

$$a^{2} = c^{2} - b^{2}$$
 $a^{2} = 10^{2} - 5^{2}$
 $a^{2} = 100 - 25$
 $a^{2} = 75$
 $a = \sqrt{75}$

Therefore
$$\overline{BD} = \sqrt{75}$$

In isosceles $\triangle ABC$, what is the length of BC? Write your answer as a mixed radical.

$$\triangle$$
ABD is congruent to \triangle ACD

Therefore in
$$\triangle$$
 ADC $\overline{DC} = \sqrt{75}$

$$\sqrt{75} + \sqrt{75} = 2\sqrt{75}$$

Reduce
$$2\sqrt{3} \times 5 \times 5$$

 $2 \times 5\sqrt{3}$
 $10\sqrt{3}$