Warm Up

Determine the type of hybrid orbitals used by the carbon atom in CF₂O. How many sigma and pi bonds does carbon make?

p. 236 #23-29

Bond Polarity

- In covalent bonds, the bonding pairs of electrons are shared between atoms.
- Two nuclei 'pull' the electrons. Amount of 'pull' is dependent on the atoms' electronegativities.

Nonpolar covalent bond

Bond that forms when the atoms in the bond pull equally, and the electrons are shared equally.

Ex.

Polar covalent bond

Bond that forms when the electrons are shared unequally

- More electronegative atom attracts electrons more strongly and gains a slightly negative charge. Less electronegative atom has a slightly positive charge.

Ex.

$$H_2O$$

$$N-C1$$
3.0 \ 3.0

nonpolar covalent

Table 8.3 Electronegativity Differences and Bond Types

Electronegativty difference range	Most probable type of bond	Example	
0.0-0.4	Nonpolar covalent	H - H (0.0)	
0.4-1.0	Moderately polar covalent	H - CI (0.9)	
1.0-2.0	Very polar covalent	H - F (1.9)	
≥ 2.0	lonic	Na ⁺ Cl ⁻ (2.1)	

^{*} No sharp boundary between ionic and covalent

Polar Molecules

In a polar molecule, one end of the molecule is slightly negative, and the other end is slightly positive.

-Partial charges are often called charged regions or poles.

A molecule with two poles is called a **dipole**.

p. 239

Practice Problems #30, 31

Table 6.2								
Electronegativity Values for Selected Elements								
H 2.1								
Li	Be	B	C	N	O	F		
1.0	1.5	2.0	2.5	3.0	3.5	4.0		
Na	Mg	AI	Si	P	S	CI		
0.9	1.2	1.5	1.8	2.1	2.5	3.0		
K	Ca	Ga	Ge	As	Se	Br		
0.8	1.0	1.6	1.8	2.0	2.4	2.8		
Rb	Sr	In	Sn	Sb 1.9	Te	I		
0.8	1.0	1.7	1.8		2.1	2.5		
Cs 0.7	Ba 0.9	TI 1.8	РЬ 1.9	Bi 1.9				