

Prime Numbers

A <u>Prime Number</u> can be divided evenly **only** by 1 & itself. And it must be a whole number greater than 1.

The first few prime numbers are 2, 3, 5, 7, 11, 13, 17 etc.....

Prime Numbers

				<u> </u>					
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1) Write out the numbers from 1 to 100 in ten rows of 10.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41									
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71									
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- 2) Cross off number 1, because all primes are greater than 1.
- 3) Number 2 is a prime, so we can keep it, but we need to cross off the multiples of 2 (i.e. even numbers).
- 4) Number 3 is also a prime, so again we keep it and cross off the multiples of 3.
- 5) The next number left is 5 (because four has been crossed off), so we keep it and cross of the multiples of this number.
- 6) The final number left in the first row is number 7, so cross off its multiples.
- 7) You have finished. All of the "surviving" numbers (coloured in white below) on your grid are prime numbers.

A prime number can only be divided evenly by one and itself.

The following are NOT Prime Numbers

1 x 0 2 x 0 ha 3 x 0 nu etc.

Zero has one an infinite number of factors.

1 x 1 One only has one factor...

Determining the Prime Factors of a Whole Number

Write the prime factorization of 240

Draw a Factor Tree !!

The Prime Factorization of 240 is: 2 x 2 x 2 x 3 x 5 x 2 or 2⁴ x 3 x 5

The Prime Factors of 240 are: 2, 3, & 5

Determining the Prime Factors of a Whole Number

Write the prime factorization of 240.

$$240 \rightarrow 2 \times 2 \times 2 \times 2 \times 5$$

The Prime Factorization of 240 is: 2 x 2 x 2 x 3 x 5 x 2 or 2⁴ x 3 x 5

The Prime Factors of 240 are: 2, 3, & 5

Write the prime factorization of 3300.

$$3300 \longrightarrow 2 \times 2 \times 3 \times 5 \times 5 \times []$$

The prime factors of 3300 are 2, 3, 5, and 11. The prime factorization of 3300 is: $2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 11$, or $2^2 \cdot 3 \cdot 5^2 \cdot 11$

Write the prime factorization of 12600.

$$12600 \longrightarrow 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 7$$

The prime factors of 3300 are 2, 3, 5, and 11. The prime factorization of 3300 is: $2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 11$, or $2^2 \cdot 3 \cdot 5^2 \cdot 11$

You Try... Write the prime factorization of 6615.

$$6615 \longrightarrow 3 \times 3 \times 3 \times 5 \times 7 \times 7$$

Don't forget to check your answer!!

The prime factors of 3300 are 2, 3, 5, and 11. The prime factorization of 3300 is: $2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 11$, or $2^2 \cdot 3 \cdot 5^2 \cdot 11$

What is a "Factor"?

Factors are the numbers you multiply together to get another number:

Sometimes we need to find all of the factors of a number:

Find all the factors of 12:

the factors of 12 are 1, 2, 3, 4, 6, 12

Because: $1 \times 12 = 12$ $2 \times 6 = 12$ $3 \times 4 = 12$

What is a Common Factor?

We said that

The Factors of 132 are : (1)(2)(3) 4,(6) 11, 12, 22, 33, 44, 66, 132

The Factors of 162 are :1236, 9, 18, 27, 54, 81, 162

The common factors are the ones found in both lists.

Therefore: The common factors of 132 & 162 are 1, 2, 3, 6

What is the Greatest Common Factor?

The <u>Greatest Common Factor</u> is simply the greatest of the common factors.

The common factors of 132 & 162 are: 1, 2, 3, 6

The Greatest Common Factor of 132 & 162 is 6.

Using prime factorization find the GCF of \dots

Using prime factorization find the GCF of \dots

