## Sequences

#### Find the first 5 terms of the following sequences:

$$t_{n} = 3^{n}$$

$$t_{1} = 3^{1} - 3$$

$$t_{2} = 3^{2} = 9$$

$$t_{3} = 3^{3} = 37$$

$$t_{4} = 3^{4} = 87$$

$$t_{5} = 3^{5} = 343$$

$$3_{1}9_{1}3_{1}8_{1}3_{4}3_{1}.$$

geometric (r=3)

a constant
$$t_{n} = (n+2)(n-1)$$

$$t_{1} = (1+3)(1-1) = 0$$

$$t_{2} = (3+3)(3-1) = 10$$

$$t_{3} = (3+3)(3-1) = 18$$

$$t_{4} = (4+3)(4-1) = 18$$

$$t_{5} = (5+3)(5-1) = 36$$

6,4,10,18,38,...

$$t_1 = 1+5=6$$
 $t_3 = 3+5=7$ 
 $t_3 = 3+5=8$ 
 $t_4 = 4+5=9$ 
 $t_5 = 5+5=10$ 

\*  $(6,7,8,9,10,...)$ 
ar theretic  $(d=1)$ 

adding a constant

 $t_n = n + 5$ 

# Arithmetic Sequences adding a constant $\rightarrow$ "common difference" Ex: 2, 5, 8, 11, 14 $d = t_0 - t_1 = t_3 - t_3$

- The difference between each term is constant.
- In the sequence 2, 5, 8, 11, 14. the difference between each term is 3.
- The difference is called 'd''.  $d = t_2 t_1$
- The first term is called "a" or " $t_1$ ".
- The second term is called 't<sub>2</sub>".
- The last term or an indicated term is called  $t_n$ ". (general  $t_n$ )
- The position of a term or the number of terms is calledn".

$$d=3$$

### Arithmetic Sequences

To find any given term in an arithmetic sequence we use the following formula:

the following formula:
$$t_n = a + (n-1)d$$

$$d = t_3 - t_4 = t_3 - t_5 = t_4 - t_3...$$
Example I

Example I

Find the indicated term of the following sequence

1, 4, 7...

a | 
$$t_{1} = 1 + 18$$

1, 4, 7...

b) Find  $t_{2} = 1 + 18$ 

1, 4, 7...

b) Find  $t_{3} = 1 + 18$ 

1, 4, 7...

b) Find  $t_{50} = 1 + 19$ 

c)  $t_{50} = 1 + 19$ 

c)  $t_{50} = 1 + 18$ 

c)  $t_{7} = 1 + 18$ 

c)  $t_{1} = 1 + 18$ 

c)  $t_{2} = 19$ 

We can also determine the number of terms in the sequence.

$$t_n = a + (n-1)d$$

Example II.

How many terms are in the following sequences? (Solve for "n")

1, 3, 5,... 71

$$a = 1$$
 $7 = 1 + (n-1)\theta$ 
 $d = 0$ 
 $d =$ 

Find "a", "d", and "t<sub>n</sub>" for the following sequence

$$4, 7, 10, 13, 16, 19, 20, 25$$

$$t_5 = 16, t_8 = 25$$

$$t_8 = a + (8 - 1)d$$

$$t_8 = a + (8 - 1)d$$

$$t_8 = a + (8 - 1)d$$

$$t_8 = a + 7d$$

### Homework

#1

#2

#3

#6

#9