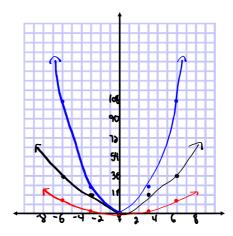
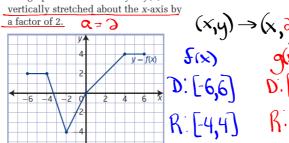
Questions from Homework

2. a) Copy and complete the table of values for the given functions.

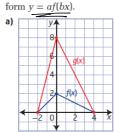
x	$f(x) = x^2$	g(x) = 3f(x)	$h(x) = \frac{1}{3}f(x)$
-6	36	108	l9
-3	9	ən	_3
0	0	0	ő
3	9	27	3
6	36	108	- <u>1</u> 9

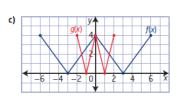


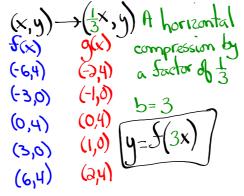
6. The graph of the function y = f(x) is



7. Describe the transformation that must be applied to the graph of f(x) to obtain the graph of g(x). Then, determine the equation of g(x) in the form x = g(f(x))







Warm-Up...

Given that (-2, 5) is a point on the graph of y = f(x), determine the coordinates of this point once the following transformations are applied...

(1)
$$y = 3f(x)$$
 $a = 3 \rightarrow \text{vertical stretch}$

by a factor of 3

 $(x,y) \rightarrow (x,3y)$
 $(-2,5) \rightarrow (-3,15)$

(3)
$$y=4f\left[\frac{1}{2}(x+5)\right]-\frac{3}{2}$$
 $a=4$ vertical stretch by a factor of 4

 $b=5$ horizontal stretch by a factor of 3

 $h=-5$ translated 5

units left

 $K=-3$ translated 3

units down

 $(x,y) \rightarrow (x-54y-3)$
 $(-3,5) \rightarrow (-9,17)$

(2)
$$y = f\left(-\frac{1}{3}x\right)$$
.

 $b = -\frac{1}{3}$ horizontal stretch

by a factor of 3 d-
a horizontal reflection

in the y-axis

(4) $y - 5 = -2f(-2x + 6)$
 $y = -2f\left(-2x + 6\right) + 5$
 $y = -2f\left(-2x + 6\right) + 5$

Transformations:

2. The function y = f(x) is transformed to the function g(x) = -3f(4x - 16) - 10. Copy and complete the following statements by filling in the blanks.

The function f(x) is transformed to the function g(x) by a horizontal stretch about the ② by a factor of ③. It is vertically stretched about the ③ by a factor of ④. It is reflected in the ②, and then translated ④ units to the right and ③ units down.

$$g(x) = -35(4x-16)-10$$

$$g(x) = -35[4(x-4)]-10$$

$$a = -3$$

$$b = 4$$

$$h = 4$$

$$k = -10$$

a)
$$\frac{y-axis}{4}$$
b) $\frac{14}{x-axis}$
e) $\frac{3}{x-axis}$
e) $\frac{x-axis}{4}$
e) $\frac{4}{(0)}$

Summary of Transformations...

Transformations of the graphs of functions		
$f(x) + \mathbf{k}$	shift $f(x)$ up kunits vertical trans.	
f(x)-&	shift $f(x)$ down keunits	
f(x+h)	shift $f(x)$ left hunits horizontal trans	
f(x - <u>h)</u>	shift $f(x)$ right Dunits	
<i>f</i> (- <i>x</i>)	reflect $f(x)$ about the y-axis horizontal (s)	
-f(x)	reflect $f(x)$ about the x-axis $VRF+ica$	
	When $0 < a < 1$ – vertical shrinking of $f(x)$	
$\underline{af}(x)$	When $a > 1 - vertical stretching of f(x)$	
	Multiply the y values by @	
	When $0 < b < 1 - \underline{\text{horizontal stretching of } f(x)}$	
f(bx)	When $\phi > 1$ – horizontal shrinking of $f(x)$	
	Divide the x values by b	

Transformations:

$$y = f(x)$$
 $y = af(\underline{b}(x - \underline{h})) + \underline{k}$

Mapping Rule:

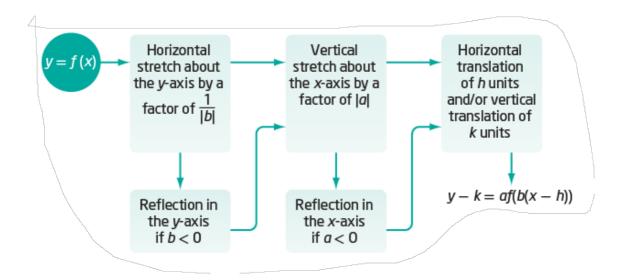
$$(x,y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$$

Important note for sketching...

Transformations should be applied in following order:

- 1. Reflections
- 2. Stretches
- 3. Translations

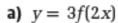
Remember....RST



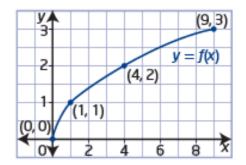
Example 1

Graph a Transformed Function

Describe the combination of transformations that must be applied to the function y = f(x) to obtain the transformed function. Sketch the graph, showing each step of the transformation.

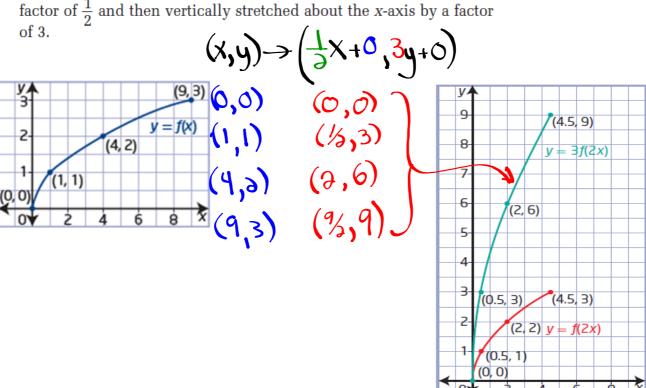


b)
$$y = f(3x + 6)$$



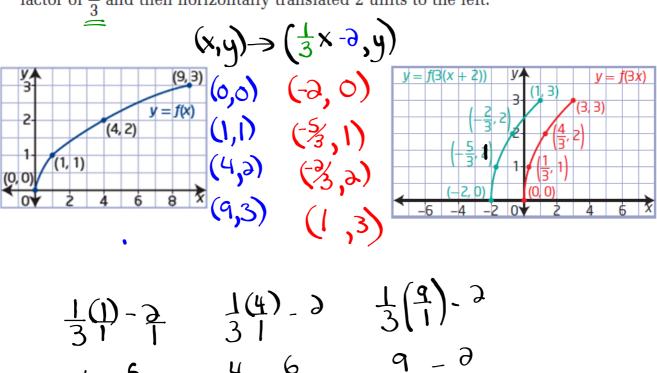
a)
$$y = 3f(2x)$$
 $\alpha = 3$ $b = 3$ $h = 0$ $K = 0$

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{2}$ and then vertically stretched about the x-axis by a factor



| Factor | b | y = f(3x + 6) | 0 = 3 | b = 3 | k = 0 | y =
$$\frac{1}{3}(x+2) + 0$$

The graph of y = f(x) is horizontally stretched about the *y*-axis by a factor of $\frac{1}{3}$ and then horizontally translated 2 units to the left.



$$\frac{1}{31} - \frac{1}{7} + \frac{1}{31} - \frac{1}{31} + \frac{1}{31} +$$

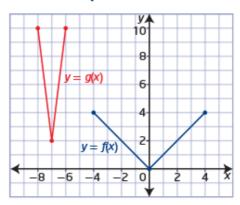
Homework

Page 38 # 3-6

Example 3

Write the Equation of a Transformed Function Graph

The graph of the function y = g(x)represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form y = af(b(x - h)) + k. Explain your answer.



Solution

Locate key points on the graph of f(x) and their image points on the graph of g(x).

$$(-4, 4) \rightarrow (-8, 10)$$

$$(0, 0) \rightarrow (-7, 2)$$

$$(4, 4) \rightarrow (-6, 10)$$

The equation of the transformed

How could you use the mapping
$$(x, y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$$
 to verify this equation?

17. The graph of the function $y = 2x^2 + x + 1$ is stretched vertically about the x-axis by a factor of 2, stretched horizontally about the y-axis by a factor of $\frac{1}{3}$, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.

is stretched vertically about the *x*-axis by a factor of 2. stretched horizontally about the *y*-axis by a factor of $\frac{1}{3}$, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.