Chapter

8

Financial Mathematics: Investing Money

LEARNING GOALS

You will be able to develop your number sense in financial applications by

- Understanding and comparing the effects of simple interest and compound interest
- Determining how changes in the variables of an investment affect the return
- Being aware of a variety of different investment instruments
- Comparing different investment strategies

8.1

Simple Interest

term

The contracted dura investment or loan.

interest

The amount of money earned on an investment or paid on a loan.

fixed interest rate

An interest rate that is guaranteed not to change during the term of an investment or loan.

principal

The original amount of money invested or loaned.

maturity

The contracted end date of an investment or loan, at the end of the term.

future value

The amount, A, that an investment will be worth after a specified period of time.

GOAL

Solve problems that involve simple interest

simple interest

The amount of interest earned on an investment or paid on a loan based on the original amount (the principal) and the simple interest rate.

Communication | Tip

Interest rates are communicated as a percent for a time period. Since most often the time period is per year or per annum (abbreviated as /a), a given percent is assumed to be annual unless otherwise stated. For example, an interest rate of 4% means 4%/a or 4% interest per year.

Based on the **principal** (original amount) that is invested/borrowed. Interest is a certain percentage per annum (year). Often used for personal loans and short-term investments. The length of time for the investment/loan is called the term.

Interest = Principal x rate x time

$$\underbrace{A = P + I}_{OR}$$

$$A = P + Prt$$
$$A = P(1 + rt)$$

- I interest earned
- P principal (original investment/loan)
- r interest rate as a percent (change to a decimal)
- t is ALWAYS time invears

(how long the money is invested/borrowed)

A - amount of money including interest

APPLY the Math p. 446

EXAMPLE 1 Solving a simple interest problem

Marty invested in a \$2500 guaranteed investment certificate (GIC) at 2.5% simple interest paid annually with a term of 10 years.

- a) How much interest will accumulate over the term of Marty's investment?
- b) What is the **future value** of his investment at maturity?

a) |= Prt

$$= (3500)(0.035)(10)$$

NOTE:

yearly increments.

Means that interest is paid only in

$$A = 3500 + 635$$

EXAMPLE #2:

Betty-Ann's bank offers a simple interst rate of 4% per annum. How much interest would Betty-Ann earn on her investment of \$4000 after 8 months.

Given.

(0.67) C=4%=0.04 I = 4000 (0.04) (8/12)

$$I = $106.67$$

$$P=4000$$
 I = \$106.67
 $t=8months$
 $t=8=\frac{3}{13}$

Time

in

years!!

rate of return

The ratio of money earned (or lost) on an investment relative to the amount of money invested, usually expressed as a decimal or a percent.

$$ROR = \frac{earn / lost}{invested}$$

EXAMPLE 3 p. 448

Determining the duration of a simple interest investment

Ingrid invested her summer earnings of \$5000 at 8% simple interest, paid annually. She intends to use the money in a few years to take a holiday with a girlfriend.

a) How long will it take for the future value of the investment to grow

Given P= 5000 r= 8%=0.08

Principal

Ingrid's Solution

a)
$$A = P + Prt$$

P is \$5000.
r is 8%, or 0.08.
A is \$8000.

$$8000 = 5000 + (5000)(0.08)t$$

$$3000 = 400t$$

$$7.5 = t$$

I knew P, r, and A. I determined t by substituting these known values into the formula A = P + Prt and solving for t.

Because I needed to isolate t, I knew that the A = P + Prt form of the equation would have fewer solution steps than the A = P(1 + rt) form would.

It will take 8 years for the future --- value of the investment to be at least \$8000.

$$1 = Prt$$
 b) $1 = 5000 (0.08)(8)$

b) After 8 years:

$$A = P + Prt$$

$$A = 5000 + (5000)(0.08)(8)$$

I knew 7.5 years would not work because the interest is paid annually. This meant that I had to round up to the next whole year. It also meant that, at 8 years, the future value would be more than \$8000.

1-300

At 8 years, the future value will be \$8200.

Interest earned:

\$8200 - \$5000 = \$3200

Rate of return = $\frac{3200}{5000}$

Rate of return = 0.64

The rate of return is 64% over 8 years.

I determined the interest earned by subtracting the principal from the future value.

I compared the interest earned with the principal to determine the rate of return.

Determining the rate of interest on a simple interest investment p. 450

Grant invested \$25 000 in a simple interest Canada Savings Bond (CSB) that paid interest annually.

- a) If the future value of the CSB is \$29 375 at the end of 5 years, what interest rate does the CSB earn?
- interest rate does the CSB earn?
 b) Grant cashed in the bond after 4.5 years because a house he had been admiring came up for sale and he needed a down payment. How much money did he have for the down payment?

b)
$$A = P(1+r+1)$$
 $A = 35000(1+(0.035)(4.5))$
 $A = 35000(1+0.1575)$
 $A = 35000(1.1575)$
 $A = 35000(1.1575)$

SIMPLE INTEREST...

In Summary p. 451

Key Ideas

- Simple interest is determined only on the principal of an investment.
- The value of an investment that earns simple interest over time is a linear function. The accumulated simple interest earned over time is also a linear function. Since the interest is paid at the end of each period, the growth is not continuous. For example, the following graphs show principal of \$300 invested at 5% interest, paid annually,

Need to Know

 The amount of simple interest earned on an investment can be determined using the formula

$$I = Pr$$

where I is the interest, P is the principal, r is the annual interest rate expressed as a decimal, and t is the time in years.

 The future value or amount, A, of an investment that earns simple interest can be determined using the formula

$$A = P + Prt$$

or $A = P(1 + rt)$

where P is the principal, r is the interest rate expressed as a decimal, and t is the time in years.

- Unless otherwise stated, an interest rate is assumed to be annual, or per annum.
- Even though interest rates are usually annual, interest can be paid out at different intervals, such as annually, semi-annually, monthly, weekly, and daily.

\$\$\$ Questions...great website for answers!!!

HOMEWORK...

p. 452: 1, 2, 3a, 4, 5, 10

$$I = Prt$$

$$A = P + I$$

$$OR$$

$$A = P + Prt$$

$$A = P(1 + rt)$$

Solutions

```
1. Determine the future value of each investment if it earns simple interest.

a) 8-year term on a principal of $30000 at 3.5%.

A = P + T.
A = P + Prt

or A = P(1+rt)
= $30000 [1+(0.035)(8)]
= $30000 (1.28)
= $38400

b) 1.25% interest paid quarterly for 4 years on $10000.

A = P(1+rt)
= $10000 [1+(0.0125)(4)]
= $10000 (1+0.05)
= $10000 (1.05)
```

```
d) 0.5% interest paid weekly for 2 years on $25000.

A= P(1+rt)
= $25000 [1 + (0.005)(2)]
= $25000 (1+0.01)
= $25000 (1.01)
= $25000 (1.01)
= $35000

d) 20-year term at 7.4% on a deposit of $12000.

A= P(1+rt)
= $12000 [1+(0.074)(20)]
= $12000 (1+1.48)
= $12000 (2.48)
= $9760
```

```
2. Cam has $5000 to invest He wants
       his principal to grow to $6500 in 5 years so that he can afford a
       new drum Kit.
    a) What simple interest rate will allow
       him to meet his goal?
        A = P + I
    $ 6500 = $ 5000 + I
$6500-$5000= I
     $ 1500 = I
     8 1500 = Prt
     $1500 = $5000(r)(5)
     $1500 = $25000 r
    $1500 = $ 25000r
   $25000 $25000
0.06 = r
      A 6% interest rate will allow him
      to meet his goal.
   b) Suppose that interest is paid semi-annually
      and Cam withdraws all the money
      after 3.25 years. How much money will be have?
      have?
       A = P(1+rt)
          = $5000 [1+(0.06)(3)]
= $5000 (1+0.18)
          = $5000(1.18)
          = $ 5900
```

```
3a) Principal of $1000 is invested at 5% simple interest, paid annually, for 5 years. What is the rate of return?

A= P(1+rt)
= $1000 [1+(0.05)(5)]
= $1000 (1+0.25)
= $1250

ROR = earn/lost invested
= $250
$1000
= 0.25 or $5%
```

```
4. Char invested $4000 at a simple interest rate of 0.3%.

a) What is the value of the investment after 5 years?

A= P(1+rt)
= $4000 [1+(0.023)(5)]
= $4000 (1+0.115)
= $4000 (1.115)
= $4460

b) What is its value after 10 years?

A= P(1+rt)
= $4000 [1+(0.023)(10)]
= $4000 (1+0.23)
= $4000 (1.23)
= $4000 (1.23)
```

5. Both Brad and Chris posts 15000 GIC. Brad's GIC has a term of and a simple interest of Chris's GIC has a term at a simple interest of Whose GIC will have future value at mate	of 6 years rate of 3.2 %. n of 5 years rate of 3.3%.
$ \begin{array}{l} BRAD \\ A = P(1+rt) \\ = $15000[1+(0.032)(6] \\ = $15000(1+0.192) \\ = $15000(1.192) \\ = $17880 \end{array} $ $ \begin{array}{l} CHRTS \\ A = P(1+rt) \\ = $15000[1+(0.033) \\ = $15000(1+0.165) \\ = $17475 $	Future value. Even though the interest rates are almost the same, Brad's GIC has a

```
10. Shaun has been looking at houses. He has $10,000 that he wants to invest,
   hoping that he can end up with
  $15000 to make a down payment
  on a house. He has an opportunity
  to invest at 65% simple interest,
  paid annually. How long will it take
  before Shaun can make a down
  payment of $ 15000?
          A = P + I
        $15000 = $10000 + I
 $15000-$10000 = T
       $ 5000 = I
       $5000 = Prt
       $5000 = $10000 (0.065) t
       $ 5000 = 650 t
       $5000 = 650 t
         650 650
   It will take Shaun 8 years to make
  a down payment of $15000.
```