Chapter 2 Radical Functions

Solve for x;
$$\sqrt{x+8} = x+6$$
. Square both sides

 $x+8 = (x+6)(x+6)$
 $x+8 = x+6x+6x+36$
 $x+9 = x+10x+36$

Bring all terms
to same side

 $0 = x^2+10x+36-x-8$
 $0 = x^3+11x+38$
 $\frac{4}{4} \times \frac{7}{2} = 28$
 $0 = (x+4)(x+7)$
 $x+4 = 0 \mid x+7=0$
 $x+7=0$
 $x=-4 \mid x=-7$

Test
$$x=-4$$

Test $x=-4$

Test $x=-1$

Test

C 3

3 Using the graph of y= f(x), sketch the graph of y= If(x). state the domain and range of each.

y=5(x)
D: [x|xer] or (-∞,∞)
R: [y|y≥-yyer] or [-4,∞)
D: [x|x≤-3, x≥3, xer]
or (-∞,-2]+[2,∞)

R:{yly=20,yeh} or(0,00)

Chapter 7 -> Exponential Functions

6. Solve the following equations (be sure to test your answers).

(a)
$$2^{2x+2} + 7 = 71$$

(b)
$$9^{2x+1} = 81(27^x)$$

$$3^{x+3} = 64$$

$$\frac{4}{6}$$

$$b_{\lambda} = 81(\lambda)_{x}$$

a)
$$3^{3x+3} + 7 = 71$$
b) $9^{3x+1} = 81(37^{x})$
 $3^{3x+3} = 64$
 $3^{3x+3} = (3^{4})(3^{3x})$
 $3^{4x+3} = (3^{4})(3^{3x})$
 $3^{4x+3} = 3^{3x+4}$
 $3^{4x+3} = 3^{3x+4}$

$$3^{4\times 10} = (3^4) \cdot (3^{3\times})$$

$$\chi = \partial$$
 is a solution

Test:
$$q^{3\times 1} = 81(37^{\times})$$

$$q^{3(3)+1} = 81(37^{\times})$$

$$q^{5} = 81(37^{\times})$$

$$9^{1} = 81(37^$$

4. Rewrite each expression as a single logarithm.

$$3\log_5 x + \frac{1}{2}\log_5(x-1) - \log_5(x^2+1)$$

7. Solve the following equation (be sure to test your answers).

$$\log_{10}(x+2) + \log_{10}(x-1) = 1$$

- 2. Cobalt-60, which has a half-life of 5.3 years, is used in medical radiology. A sample of 60 mg of the material is present today.
- a) Write an equation to express the mass of cobalt-60 (in mg), as a function of time, t in years. [2]
- b) What amount will be present in 10.6 years? [2]

c) How long will it take for the amount of cobalt-60 to decay to 12.5% of its initial amount? [3]

2. Solve for all values of $\boldsymbol{\theta}$ in the specified domain.

$$\tan^2 \theta + \tan \theta = 0$$
 , $0 \le \theta \le 2\pi$

- 2. A weight attached to the end of a spring is bouncing up and down. As it bounces, its distance from the floor varies sinusoidally with time. You start a stopwatch, when the watch reads 0.4 sec, the weight first reaches a high point 50 cm above the floor. The next low point, 30 cm above the floor, occurs at 1.8 sec.
- (a) Predict the distance the weight will be from the floor when the stopwatch reads 17.2 sec.

max=50cm
min = 30cm

$$Amp = 10$$
 $P = 2(18-0.4) = 2.8$ $h = 0.4$
 $a = \pm 10$ $b = \frac{360}{2.8} = 128.57$
 $Y = 10cos[128.57(17.2-0.4)] + 40$
 $y = 49.9 cm$

(b) How high was the weight above the floor when the stopwatch was initially started?

① Amp = 11 P=16 min = -4

$$a = \pm 11$$
 $b = \frac{360}{16} = 33.5$
 $max = -4 + 30 = 18$
 $K = -4 + 11 = 7$
 $h = 0$

A) equation: $y = -110x[30.5(x)] + 7$
 $h(x)$
 $h(x)$

l

$$9 \text{ max} = 68$$
 $68 + 34 = 46$
 $68 + 34 = 46$

Amp = 68-46 = 22
$$P = 2(2.1-1.2)$$

 $a = \frac{1}{2}22$ $P = 1.8$
 $b = 360 = 200$

$$b = \frac{360}{1.8} = 200$$

$$G c) y = \frac{1}{3} \cos (\Theta + \pi) - \frac{1}{4}$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x - \pi) \frac{1}{3}y - 4$$

$$A = \frac{1}{3} \qquad (x,y) \rightarrow (+x -$$

$$\frac{1}{\sec^2\theta\cot\theta} = \frac{\sin\theta - \sin^3\theta}{\cos\theta}$$