Foundations of Math 11 - Chapter 5 and Chapter 6 Exam Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. What is the boundary line for the linear inequality y < -2x + 9?

A)
$$y = -2x + 18$$

B)
$$v = -4x + 36$$

B)
$$y = -4x + 36$$

C) $y = -2x + 9$
D) $x = -2y + 18$

D)
$$x = -2y + 18$$

Change to an "=" sign

2. Which test point is in the solution set for the linear inequality

$$\{(x,y) | x+y < 3, x \in W, y \in W\}$$
?

D)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

(1,1)

Since 2<3, (1,1) is in the solution set for x+y<3.

3. Describe the boundary lines for the following system of linear inequalities.

$$\{y < 3x + 12, y \ge -x, x \in \mathbb{R}, y \in \mathbb{R}\}$$

- $\{y < 3x + 12, y \ge -x, x \in \mathbb{R}, y \in \mathbb{R}\}$ A) Dashed line along y = 3x + 12; solid line along y = -x
- B) Dashed line along y = 3x + 12; dashed line along y = -x
- C) Solid line along y = 3x + 12; dashed line along y = -x
- D) Solid line along y = 3x + 12; solid line along y = -x

- A vending machine sells pop and juice.
 - · The machine holds, at most, 200 cans of drinks.
 - Sales from the vending machine show that at least 3 cans of juice are sold for each can of pop.
 - · Each can of juice sells for \$1.50, and each can of pop sells for \$1.00.

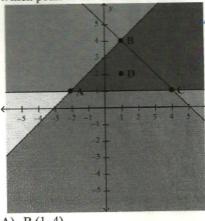
Let x represent the number of cans of pop.

Let y represent the number of cans of juice.

What are the restrictions on x and y?

A x = W, y = W

B) x = I, y = I


C) x = R, y = R

(positives and negatives)

(fractions and decimals)

D) No constraints.

5. Which point in the model below would result in the maximum value of the objective function W = 5y - 10x?

- (a) W = 5y 10x = 5(1) 10(4) = 5 40 = 5y 10x = 5(2) 10(1) = 10 10= -35
- A) W = 5y 10x = 5(4) 10(1) = 20 10 = 10C) W = 5y 10x = 5(1) 10(-2) = 5 + 20 = 25 *

- A) B (1, 4)
- B) C (4, 1)
- C) A (-2, 1)
- D) D(1, 2)

6. Brent found spiders and grasshoppers in his barn.

• There were at most 12 spiders and at least 10 grasshoppers.

• There were no more than 36 spiders and grasshoppers, in total.

Let s represent the number of spiders and let g represent the number of grasshoppers. Which inequality represents a restriction of s and g based on the given information?

B) $g \le 12$

D) s < 10

7. Brent found spiders and grasshoppers in his barn.

• There were at most 15 spiders and at most 20 grasshoppers.

• There were no more than 30 spiders and grasshoppers, in total.

Let *s* represent the number of spiders and let *g* represent the number of grasshoppers. Which inequality represents a restriction of *s* and *g* based on the given information?

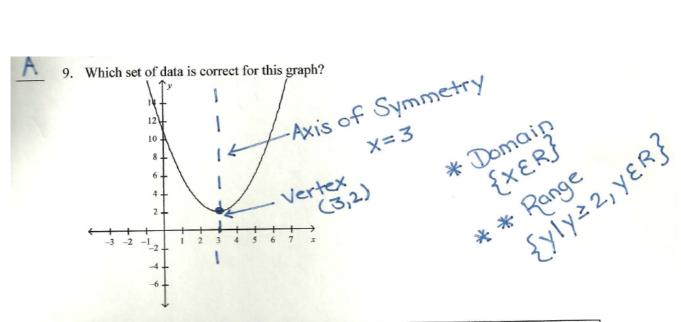
A) $g \le 30$

B) $g \ge 30$

D) $g \le 15$

8. Audrey notices the number of dogs and people in a dog park.

- There are more people than dogs.
- There are at least 12 dogs.
- There are no more than 40 dogs and people, in total. $d + p \le 40$ Let d represent the number of dogs and let p represent the number of people.


Which inequality represents a restriction of d and p based on the given information?

$$(A) d+p \le 40$$

B)
$$d+p < 40$$

C)
$$d + p \ge 40$$

D)
$$d+p > 40$$

	Axis of Symmetry	Vertex	Domain	Range
(A)	x = 3	(3, 2)	$x \in \mathbb{R}$	<i>y</i> ≥ 2
B.	x=3	(2, 3)	$x \in \mathbb{R}$	$y \in \mathbf{R}$
C.	x = 2	(2, 3)	$-1 \le x \le 7$	<i>y</i> ≥ 2
D.	x = 3	(3, 2)	$-2 \le x \le 8$	$y \ge 0$

- A) Set A.
- B) Set C.
- C) Set D.
- D) Set B.

Moderate the x- and y-intercepts for the function
$$y = x^2 - 2x - 8$$
?

A) $x = -2, x = 4, y = -8$
B) $x = -2, x = 2, y = -8$
C) no x-intercepts, $y = -8$
D) $x = -4, x = 4, y = -8$

A 11 The points (2.24) and (1.4) are leveled on the same parabola. What is the equation for the axis of symmetry.

A 11. The points (-2, 4) and (1, 4) are located on the same parabola. What is the equation for the axis of symmetry To find equation of axis of symmetry. for this parabola?

A)
$$x = -0.5$$

B) $x = -1$

C)
$$x = 0.5$$

D)
$$x = -1.5$$

12. Solve
$$x^2 + 5x + 4 = 0$$
 by factoring.

A)
$$x = -5, x = -1$$

B)
$$x = 5, x = 1$$

C)
$$x = 1$$
 $x = 1$

C)
$$x = 4, x = 1$$

D) $x = -4, x = -1$

$$x = -\frac{2+1}{2}$$

 $x = -\frac{1}{2}$ or -0.5

$$x^{2}+5x+4=0$$
 $\perp x\frac{4}{4}=4$
 $(x+1)(x+4)=0$ $\perp +4=5$
 $x+1=0$ or $x+4=0$
 $x=-1$ $x=-4$

13. Solve
$$x^2 - 10x - 24 = 0$$
 by factoring.

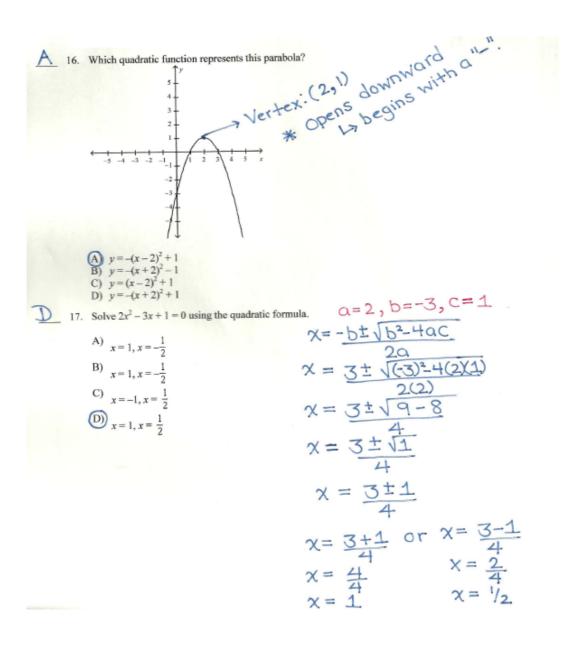
A)
$$x = -8, x = -3$$

B) $x = -2, x = 12$
C) $x = 2, x = -12$
D) $x = -6, x = -4$

 \bigcirc 14. Solve $100x^2 - 121 = 0$ by factoring.

A)
$$x = 10, x = -11$$
B) $x = \frac{11}{10}, x = -\frac{11}{10}$
C) $x = \frac{10}{11}, x = -\frac{10}{11}$
D) $x = 11, x = -11$

$$x^{2}-10x-24=0$$
 $\frac{-12}{2}x^{2}=-24$
 $(x-12)(x+2)=0$ $\frac{-12}{2}+2=-10$
 $x-12=0$ or $x+2=0$
 $x=12$ $x=-2$


$$\begin{array}{lll}
100 \times^{2} - 121 = 0 \\
(10 \times -11) (10 \times +11) = 0 \\
10 \times -11 = 0 \text{ or } 10 \times +11 = 0 \\
10 \times = 11 & 10 & 10 \times = -11 \\
10 \times = 11 & 10 & 10
\end{array}$$

$$\begin{array}{lll}
x = \frac{11}{10} & x = -\frac{11}{10} \\
x = \frac{11}{10} & x = -\frac{11}{10}
\end{array}$$

13	15.	Which set of data is correct for the quadratic relation $f(x) = -2(x-12)^2 + 15$?

	Direction parabola opens	Vertex	Axis of Symmetry
A.	downward	(15, -12)	x = 15
B.)	downward	(12, 15)	x = 12
C.	upward	(-12, 15)	x = -12
D.	upward	(15, 12)	x = 15

A) Set D.
B) Set B.
C) Set A.
D) Set C.
Watch Order!

8. Solve $9x^2 + 6x + 1 = 0$ using the quadratic formula. a=9, b=6, c=1

A)
$$x = \frac{1}{3}$$

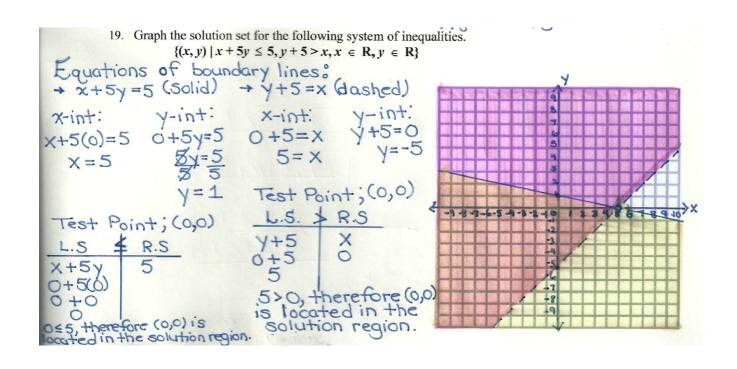
(B)
$$x = -\frac{1}{3}$$

C)
$$x = 0, x = -\frac{1}{3}$$

D)
$$x = 0, x = \frac{1}{3}$$

$$x = -b^{\pm} \sqrt{b^{2}-4ac}$$

$$x = -6^{\pm} \sqrt{(6)^{2}-4(9)(1)}$$


$$x = -6^{\pm} \sqrt{36-36}$$

$$x = -6^{\pm} \sqrt{0}$$

$$x = -6^{\pm} \sqrt{0}$$

$$x = -6^{\pm} \sqrt{0}$$

$$x = -6^{\pm} \sqrt{0}$$

- 20. Jennifer has two summer jobs.
 - She works no more than a total of 40 h a week.
 Both jobs allow her to have flexible hours but in whole hours only.
 - At the ice cream shop, Jennifer works no less than 18 h and earns \$10.00/h.
 - At the pool, Jennifer works no more than 20 h and earns \$10.75/h.

List the Defining Statements.

Let y represent the # of hours Jennifer works at the ice cream shop Let y represent the # of hours Jennifer works at the pool.

Let E represent her total earnings.

List the restrictions.

XEW, YEW

List the constraints.

X≥18

V = 20

x+y = 40

State the objective function.

E = 10.00x + 10.75y

21. Solve $|x^2 - x - 5| = 0$ using the quadratic formula. State the solution as exact values.

$$a=1,b=-1,c=-5$$

$$x=-b\pm\sqrt{b^2-4ac}$$

$$x=1\pm\sqrt{(-1)^2-4(1)(-5)}$$

$$x=1\pm\sqrt{1+20}$$

$$x=1\pm\sqrt{21}$$

22. Solve $2x^2 + 8x + 2 = 0$ using the quadratic formula. State the solution as exact values.

$$\alpha = 2, b = 8, c = 2$$

$$\chi = -b \pm \sqrt{b^2 - 4ac}$$

$$\chi = -8 \pm \sqrt{(8)^2 - 4(2)(2)}$$

$$\chi = -8 \pm \sqrt{64 - 16}$$

$$\chi = -8 \pm \sqrt{48}$$

23. A parabola with the vertex (-7, -2) passes through the point (-9, 10). Determine the equation for this parabola. Express your final answer in vertex form.

Determine the equation for this parabolic
$$y = a(x-h)^2 + K$$

$$y = a(x-7)^2 - 2$$

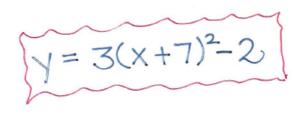
$$y = a(x+7)^2 - 2$$

$$y = a(-9+7)^2 - 2$$

$$10 = a(-2)^2 - 2$$

$$10 = a(4) - 2$$

$$10 = 4a - 2$$


$$10 + 2 = 4a$$

$$12 = 4a$$

$$44$$

$$47$$

$$3 = 0$$

