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Substitution Rule

It often arises that we need to integrate a function
which does not follow one of our basic integral formulas
therefore other techniques are necessary.

One such technique is called Substitution that
involves a change of variable, which permits us to
rewrite an integrand in a form to which we can apply a
basic integration rule.

Substitution Rule for Indefinite Integrals
If u=g(x) then [ f(g(x)g'(x)dx= [ f(u)du

Substitution Rule for Integration corresponds...
to the Chain Rule for Differentiation.

Let's do an example...
Find
" j(x2 — 5)* 2xdx

In using the substitution rule, the idea is fo replace
a complicated integral by a simpler integral by changing
to a new variable u. (W -sdbost dudion
In thinking of the appropriate substitution, we try
to choose u to be some function in the integrand whose
differential du also occurs. (ignoring any constants)
Jeewalive Iﬂ;‘%‘m}

So using the above example we have...

If?%r“
X" —5) 2xdx

£6- %(xa—sﬁ‘ o C

516 = (.5 @)
C—\—
Ir\]( Q3r an)
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Evaluate each of the following:

5
3 W= “\

du - 3y
I *

\
9 2\ 9

[RAE RN
—l?)db\ - X d%

/ Uuse ’,ﬁ‘)lﬂ 5&

June 02, 2016
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= - Looglx +C
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Evaluate each of the following:

lnx \r—\nx
[5d aya
=) tnx (L)dx
- gu o
>
= b 4 C
o,

= (W | ¢
2

:%ﬂnsz-l—c

_[(Z-I—sin x)" cos xdx
W= 4 SInX
= g u\odu &\A:COSX()*
W
=B 4 (
\\

L
= (Qagm) *C
I
1 N
H(2+sm:c) +C
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Evaluate each of the following:

[2xV1+x7dx | ¥ cos(x* +2)dx

=y W= %' 49
>
du= axdx du= d
—h()u‘—x dx
v,
=§ WP
% = fosut Dy
M+ C
S =1 &(oSu du
3 4
= 2 (ZY+C
_ S X+ )L\(S\QQ d

Y
- Lan(X42) +C
:%(xul)”hc Thel )
1

:Esm(f1 +2)+C
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Evaluate each of the following:

J.x/2x+1dx w=dx+| J.\/x—zdx u= -4
du= 2dx I=4x Ju="Oxdx

:((B_X«\/a_z( Jéc)\.:c)x ) gé_(pg;j/ég -163»\:)&3&

=gb\\/a IV ‘-Sb\%b\

= %&u‘/’ du = —é gb\/" du
=V (5u22)

= L(@u?)«C 30u) C
- L P, C =lu® L C

3 L

E = —.‘_(\_U(X‘a\ A+ C

= L (ox¢ \)/a + C q

3

1

(2x+1)"* +C =—%1J1—4x2 +C
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Evaluate the following:

J.ei—"dx W= 5%
o du=54dx

(" 1du=4

SC —\gu 3 ~on

June 02, 2016
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Evaluate: J'mxﬁ dx

June 02, 2016

appropriate substitution becomes more obvious if we
factor x° as x* x

u,)v\c\\ G\OC‘M x"l

\ 2 )
- > - ( =
- g(Hx qu Jx : \“3 ‘ :\ HX):
u= xdx T

y > Ladtexdx QA*B}:X“
- Su (u-1) {Lfw

= {SS\J\%(L‘:-BM*DJ“
‘9"‘5/5_ —DM%‘Q. "f/i
) Lg“S/é_}\i/a_‘_ 36“ Sé 5 S
)
IR TRO R
3 g B}
—~ jﬂ‘:/)—?_us/éA\rl—\«}é +C
S
R 54 p)
= (. xa)é»,a_(\* Xa\/ TGRS e
N o) D
1 2 1
= 1+:-:2)m—§(1+x2)5f2+§(l+x2)m+c
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Homework - Exercise 11.3 - pp. 511-5612 - Q. 1- 6
RED BOOK
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Let's do one where the higher degree is not under the
radical, but outside... how do we handle this????

jx2\/8x+5dx

Ixzx/8x+5dx

well let
u’ -5
u* =8x+5 and 8

=X

2udu = 8dx

1ua’u =
4

dx

Now let’s start the integration:

= {%*/Bx+5dx
—j[” _5] (—uduj
:J-[u —123 +25J[u7d”]

B f u® —10u* +2504°
256

du

1

=—u® —10u* + 25u°du
256

Now integrate, | brought out the 1/256 (makes it funner) lol

7 3
_ (s 25u
256\ 7 3

So, now fill in for u and simplify......

J+C
7

2 5
256 7

a 1/21 as well as (8x+5)3/2
3

(8x+5)?
T[xs x+5)° —42(8x +5)+175 |+ C
and get.......oueee.
3
M[192x ~96x+40]+C
5376

reduce
3

2
:%[24;& ~12x+5]+C

=+8x+5

25(8x+5)?

June 02, 2016

therefore

3
+C

maybe now factor out

multiply this out

and then you can

amazing!

10
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Evaluate: J‘ m ¥ dx
f m (xf/X Hx

appropriate substitution becomes more obvuous |f we

factor x° as x* x ,)— \( (\r- (,h D" fne

U= e u—l;aclv
0"’/(:-9'/744/)( -\ =K

11



Day 58 - U-Substitution after.notebook June 02, 2016

Fo= ™ + U o={ =l

Y= 4+ Qe

n
. . :L‘\—q"(
MM}\:/"’%; AK __f\.....
'S

12
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When performing a definite integration using
substitution, we have to change the limits of integration
so that they are the appropriate values of u.

Substitution Rule for Definite Integrals

If u=g(x) ,then f F(20) g (x)dx :E{Z’ f()du

Example...
Vx

L

0

Find the area under the curve....

A= L
02x+1

O

14
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Evaluate:

Jj ~2x +1dx

O

June 02, 2016
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As we have discussed before, every differentiation
rule has a corresponding integration rule.

The rule that corresponds to the Product Rule for
differentiation is called the rule for integration by parts.

The product rule stated that if f and g are
differentiable functions, then

% [£(x)g(®)] = f(x)g'(x) + g(x) 1 (x)

In the notation for indefinite integrals this equation
becomes... ([ £(x)g' (x)dx+ g(x) /" (D)dx]= (g )

or

[ F0g e+ [ gy f () = £(x)g(x)
which can be rearranged as:
[ Feg (e = £ (2)g(x)— [ g () 1 (x)edx

this formulas above is called

the formula for integration by parts

It is perhaps easier to remember in the following
notation..... Let | u=f(x) and v=g(x)

then the differentials are: du = 1" (x)dx dv = g'(x)dx

And by the Substitution Rule, the formulas becomes...
[ F g (x)dx = Fix)g () — [ g(x) " (x)edx

Integration By Parts
Iudv =uv— ledu

Let's do an example.... Find: J-xsin xdx

It helps when you wt? pee;:i to maléedan appropriate
stick to this pattern: cnoiee 1or u,an Y
,l
U= dv = lll
4
du = V= I'I

Again, the goal in using'in‘regr'a‘rion by parts is to
obtain a simpler integral than the one we started with...
so we must decide on what u and dv are very carefully!

In general, when deciding on a choice for u and dv, we
usually try to choose u = f(x) to be a function that
becomes simpler when differentiated...

(or at least NOT more complicated)
as long as dv = g'(x)dx can be readily integrated to give v.

June 02, 2016
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Find: Ixexdx

It helps when you
stick to this pattern:

= dv:

June 02, 2016
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Find: J-x cos(3x)dx

It helps when you
stick to this pattern:

= dv:

June 02, 2016
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Find: Jlln s

It helps when you
stick to this pattern:

= dv:

June 02, 2016
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Find: J-xz sin(3.x)dx

It helps when you
stick to this pattern:

= dv:

June 02, 2016
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Find:
J-xzexdr

It helps when you
stick to this pattern:

= dv:

June 02, 2016
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Find: Jlxz In xdx

It helps when you
stick to this pattern:

= dv:

June 02, 2016
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We've done this one already,
but let's do it again and evaluate

It helps when you
stick to this pattern:

U= dv =

June 02, 2016

= f Inxdx

26
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It helps when you
stick to this pattern:

= dv:

June 02, 2016
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It helps when you
stick to this pattern:

= dv:

June 02, 2016
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ind: .
gl Ism ' xdx

It helps when you
stick to this pattern:

»=HE ~-Hl

du = V=

may require substitution rule as well... -




Day 58 - U-Substitution after.notebook

Find: =
" J;:’ sin x In(cos x)dx

It helps when you
stick to this pattern:

= dv:

June 02, 2016
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Find:

It helps when you
stick to this pattern:

= dv:

June 02, 2016
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WARM UP Find:

It helps when you
stick to this pattern:

= dv:

2 .
_[x 81N XX

June 02, 2016
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sin” x cos xdx

sin’ x cos” xdx

In the preceding examples, an odd power of sine or cosine enabled us to separate a single
factor and convert the remaining even power. If the integrand contains even powers of both sine
and cosine, this strategy fails. In this case, we can take advantage of the half-angle identities.

sin? xdx

sin” xcos” xdx

sin® xdx

may have to use the half-angle identity twice

Strategy for Evaluating | sin"x cos™x dx

(a) If the power of cosine is odd (n = 2k + 1), save one cosine factor and
cos’x = 1 — sin’x to express the remaining factors in terms of sine:

sin®x cos®**x dx = J sin”x (cos’x)* cos x dx
= ‘l sin®x (1 — sin’x)* cos x dx
Then substitute u = sin x.
(b) If the power of sine is odd (m = 2k + 1), save one sine factor and use ]
. 3 . : "
sin®x = 1 — cos’x to express the remaining factors in terms of cosine:

[ i 2k [ (e .
J sin™*'x cos"x dx = ' (sin’x)* cos"x sin x dx

= | (1 = cosx) cos"x sin x dx

”

Then substitute u = cos x. [Note that if the powers of both sine and cosi
odd, either (a) or (b) can be used.]

(c) If the powers of both sine and cosine are even, use the half-angle identiti
sin’x = (1 — cos 2x) cos’x = }(1 + cos 2x)
It is sometimes helpful to use the identity

. 1 .
sin x cos x = ; sin 2x

36
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Evaluate:

A
J.tans xsec” xdx

7
Itans xsec’ xdx

Strate

June 02, 2016

Strategy for Evaluating I tan™x sec”x dx

(a) If the power of secant is even (n = 2k), save a factor of sec’x and use
sec’x = | + tan’x to express the remaining factors in terms of tan x:

t tan™x sec**x dx = ' tan™x (secx)* ' sec’y dx

- [lan"'.x{l + tan’x)" 'sec’x dx

Then substitute ¥ = tan x.
(b) If the power of tangent is odd (m = 2k + 1), save a factor of sec x tan x a
use tan’x = sec’x — 1 to express the remaining factors in terms of sec x:

‘ tan®** 'x sec"x dx = * (tan’x)* sec™ "x sec x tan x dx

= ‘ (sec’x — 1) sec” 'x sec x tan x dx

Then substitute ¥ = sec x.

37
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We will also need to know the indefinite integrals of tan x (already found this
one) and sec x when integrating these types of functions.

Utan xdx = 1n|secx| +C _[secxdx =Infsecx +tanx|+C

. RN =
sec xdx = In [sec x + tan x| + C

'<IIIIIIIII EEEEENI]

| tan x dx = In |sec x| + C

Itan3 xdx -
J.secz’ xdx -

here, we can use integration by parts and rearrange for
double the original integral.

Find:

38
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Exercises 7.2 [ page 482

Exercises 7.2 () page 482

1
1. 5cos’x —jcos’x + C 3. —3

5. §sin’x — 2sin’x + §sin’x + C
9. §x+%sin2x+3—l,sin4x+ C

11. (3x/2) + cos 2x — g sindx + C
15. [ cos’ — 3 cos x] eos x + €

17. jcos’x — In|cosx| + C

2. tanx —x+ C  23. tanx + jtan’x + C
27. jsec’x —secx + C 29, %
31. ;sec'x — tan’x + In |sec x

35. /3 — (w/3)

37. —}cot'w — §cot’w + C

41. 3[}sin3x — Jsin7x] + €
}sin2x + C

19. In(1 + sinx) + C

>

39. In|escx — cotx| + C
43. ;sin20 + 5 sin 120 + C

47. —;cos’x + 3cos’x — cosx + C

1.1

7. n/4

13. 37 — 4)/192

33. Jtan’x + C

-

e

f

-

¥

L.

A

June 02, 2016
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Trigonometric Substitution

This is an integration technique introduced as a means
of evaluating integrals involving the radical forms:

2 2 2 2
a —x a +x x> —a’
For integrals involving: let then

x=asm@ | Ja® -x* =acosd

-\/a2 _x2
Na® + x? x=atanf | va*>+ x> =asec
\ x2 _a2

x=asecl|Vx*-a*=aqtand

Just as with algebraic substitution, our objective
with trigonometric substitution is to eliminate the
radicals in the integrand. There are three substitutions
that accomplish this objective for the three types of
radicals outlined in the table above. X£d

To show that the radical is eliminated as indicated in
each of the three cases, we need to use the following
trigonometric identities: gin?2 @ +cos’ @ =1

: Il double angle identity:
1—sin?@ =cos®@ e 9 Y
sin 28 = 2sinfcosd

2 2 :
1+tan® @ =sec’ @ | 50w Wil make use of the
Half-angle identities:

sec’@ —1=tanZ8 1—cos26

Gin’ g cos? O = 1+ cos28

2 2

We will always manipulate the radical first so that we
have the constant... a=1

It also helps to build a triangle marking angle theta.

42



Day 58 - U-Substitution after.notebook

use the help of a triangle to define theta before substitution

J.ﬁdx

J.-\/4—x2dx

June 02, 2016
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use the help of a triangle to define theta before substitution

1
N

J. I dx
x*\1—x°

I dx
x*V9—x*

June 02, 2016
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dx

1
I VO — 4952

I\/16+25x2dx

June 02, 2016
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1

dx
I J16+36x>

June 02, 2016
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Use trigonometric substitution to find each of the following:

[V36-25x"aix >

47
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Find the area enclosed by the ellipse: 2 2

sketch (find area in first quadrant from x = 0 to x =5)

y="?

>

48
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Exercises 7.3 [ page 488

L Vx2—9/90) +C 3.ix*-18)J/x’+9+C
5. 724+ 3/8 -3 1. —J25 —x/(25x) + C
9. (1/v/3)In [(Vx* +3 — B)/x| + C

11. 3sin7'(2x) + 3x/1 — 4x2 + C

13. /Ox2 — 4 — 2sec'(3x/2) + C

15. (x/va? — x2) — sin"'(x/a) + C 17. x2 —=iH8

. In(1 +v2) 21, 5%

. alsin7'(x — 1) + (x — 1)v2x — x2] + C

ciln|3x+ 1+ /O9x2+6x—8|+C
sftan'(x + 1) + (x + 1)/(x2+ 2x + 2)] + C

. 3le'vO —eZ + 9 sin"'(e?/3)] + €

. 3m/2  37. 0.81,2;2.10

. r/R?* = r* + 7r¥/2 — R? arcsin(r/R)

51
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WARM UP
Find the area enclosed by the ellipse: xZ y2
+—=1
16 36

sketch (find area in first quadrant from x = 0 to x =4)

y="?

>

52
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_[ 9— x°

June 02, 2016

recall: ¢ot2@+1=csc?@
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