
There are other ways to solve Systems of Equations!

Elimination is when you "eliminate" one of the variables.

$$y - 2x = 5$$
 (1)
-y - 1x = 4 (2)

Make sure the corresponding variables, constants and equal signs are lined up.

Consider the system
$$2x + 2y = 7 \text{ (b)}$$

$$1x - 2y = 5 \text{ (c)}$$

$$3x = 13$$

$$x = 4$$

$$x =$$

Consider the system

+
$$2x + 2y = 7$$
 Lets add both equations to each other

$$x + 3y = 14$$

$$x + 4y = 7$$

Who would you eliminate??

Elimination by Subtraction

$$6x + 11y = -50$$

$$6x + 9y = -3$$

$$6x + 11y = -50$$

$$-6x - 9y = +3$$

$$3$$

$$5xb in (1)$$

$$6x + 11y = -5$$

$$x - 2y = -12 \text{ (1)}$$

$$-2y(-6)x = 16 \text{ (2)}$$

$$x - 2y = -12 \text{ (1)}$$

$$-1x - 2y = -16 \text{ (2)}$$

$$1x - 2y = -16 \text{ (3)}$$

$$1x - 2y = -16 \text{ (4)}$$

$$1x - 2y = -16 \text{ (3)}$$

$$1x - 2y = -16 \text{ (4)}$$

$$1x - 2y = -16 \text{ (4)}$$

$$1x - 2y = -16 \text{ (3)}$$

$$1x - 2y = -16 \text{ (4)}$$

$$1x - 2y = -16 \text{ (3)}$$

$$1x -$$

$$-3x - 5y = 10$$

 $-3x - 7y = 14$

Elimination by Multiplication 3x + 2y = 1277

$$3 \times ^{2} + 2 = 12$$

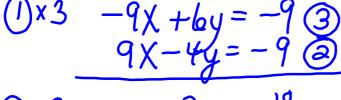
Make sure the corresponding variables, constants and equal signs are lined up.

$$0 \times 2 \quad 6X + 4y = 24 \quad 3$$

$$0 \times -3 \quad -6X - 9y = -39 \quad 4$$

3+4 =5 =15 You must explain what you are doing.

Sub in a


3x + 3y = 13 3x + 3(3) = 13 3x + 3(3) = 13 3x = 4 3x = 4 3x = 4

Solve the following System of Equations $-3x^2 + 2y^2 = -3x^2/D$

$$9x - 4y = -9 ②$$

$$-9x + 6y = -9 ③$$

Make sure the corresponding variables, constants and equal signs are lined up.

(3+(g) = (g) = (g)

You must explain what you are doing.

Try these:

$$x - 2y = 5$$

 $+ 2x + 2y = 7$

$$x + 2y = 6$$

$$x + 2y = 6$$
$$3x + 3y = -6$$

$$x + 2y = 6$$

$$3x + 3y = -6$$

$$3x + 3$$

1.

$$x - 2y = 5$$
Lets add both equations to each other
$$3x = 12$$

solve for x
$$ANS: (4, y)$$

$$x=4$$

Now solve for y (HOW???)

- sub the value of x into one of the equations and solve for y

$$x - 2y = 5$$

4 - 2y = 5
- 2y = 1
 $y = -1$

intersection point (4, - 0.5)

2.

Careful you are subtraction all of the second (switch all signs on t second equation)

$$6x + 11y = -5$$

$$-6x - 9y = +3$$

$$2y = -2$$

$$y = -1$$

solve for x

$$6x + 11y = -5$$

 $6x + 11(-1) = -5$
 $6x - 11 = -5$
 $6x = -5 + 11$
 $6x = 6$
 $x = 1$

Intersection (1, -1)

3.

Consider the system

$$3x + 6y = 18$$

$$-3x - 3y = +6$$

$$3y = 24$$

$$y = 8$$

Now subtract the equations

Sub into equation 1 (original) or the above

$$x + 2y = 6$$

 $x + 2(8) = 6$
 $x + 16 = 6$
 $x = 6 - 16$
 $x = -10$

(-10, 6)

