Jennifer is starting a business making pies. The first day she makes 20, the second she makes 25, the third day 30 and the fourth 35.

a) Show this information in a t-chart.

X	y
1 × 3 4	ا ، ب

b) Write an equation to represent this situation.

$$y = 5X + 15$$

$$y = 5x + 15$$

c) Use your equation to determine the number of pies Jennifer would make on day 10 if she continued this pattern. u = 5x + 15

$$y = 5x + 15$$

 $y = 5(10) + 15$
 $y = 50 + 15$
 $y = 65 p = 65$

d) On what day would she make 85 pies?

$$y = 5x + 15$$

 $85 = 5x + 15$
 $5x + 15 = 85 - 15$
 $5x = 70$

Gorman's Taxi charges an initial fee of \$5.00 and \$2.00 a kilometer.

a) Write the equation to represent this situation.

c) How many kilometers could you travel with \$41.00?

$$y = 2x+5$$

 $41 = 2x+5$
 $41 = 2x+5$
 $2x+5 = 41-5$
 $2x = 36$
 $2x = 36$
 $2x = 36$

ŀ	1 2 3 4 5 5	y 224 26 28 28 30 32	2,	2 × 3 4 5 6	8 8 7 16 2 4 32 40	3.	2 × 3 4 5 6	20 16 12 2 8 4	-4 -4
Write the equation for each of the following:									
4.	8 × 9 10 11	y 16 20 24 24 28 2	5.	5 7 6 7 8 9	30 25 20 15 10	6.	9 10 10 11 12 13	31 34 37 40	3
1. $y = 2x + 22$ 3. $y = -4x + 28$ 5. $y = -5x + 55$ 2. $y = 8x - 8$ 4. $y = 4x - 16$ 6. $y = 3x + 1$									
a . 8	f - 8	x - 8		4. J	= 4x.	- 16	6.	y = 3	X + 1

How many people can sit at the tables? (only one person per edge)

Table Seating

How many people can sit with 100 tables?

$$A = 309 \text{ beadle}$$

$$A = 3(100) + 3$$

$$A = 3x + 3$$

Check out page 159, questions 4 to 10