Questions from Homework

Velocity

$$4 h = 34.5t - 4.9t^3$$

$$V = 34.5 - 9.8t$$

(4) d)
$$s = \frac{5t}{1+t}$$

$$v = \frac{(1+t)(5) - 5t(1)}{(1+t)^3}$$

$$v = \frac{5+5t-5t}{(1+t)^3} = \frac{5}{(1+t)^3}$$

$$\alpha = \frac{-10(1+t)^{4}}{(1+t)^{4}} = \frac{-10}{(1+t)^{3}}$$

$$O(4) = \frac{-10}{(1+4)^3} = \frac{-10}{185} = \frac{-2}{25} \text{ m/s}^3$$

$$\alpha = \frac{1}{4(t_{9}+t_{1})^{3/9}}$$

$$\alpha = \frac{1}{4(t_$$

$$S = t^3 - 15t^3 + 63t$$

$$V = 3t^3 - 30t + 63$$

a) Let
$$V=0$$

$$0=3t^{3}-30t+63$$

$$0=3(t^{3}-10t+31)$$

$$0=3(t-7)(t-3)$$

Related Rates

In a related rates problem, we are given the rate of change of one quantity and we are to find the rate of change of a related quantity. To do this, we find an equation that relates the two quantities and use the *Chain Rule* to differentiate both sides of the equation with respect to time.

Differentiate with respect to time

If
$$x^3 + y^3 = 9$$
 and $\frac{dx}{dt} = 4$, Find $\frac{dy}{dt}$ when $x = 2$

$$3x^3 \frac{dx}{dt} + 3y^3 \frac{dy}{dt} = 0$$

$$3(3)^3(4) + 3(1)^3 \frac{dy}{dt} = 0$$

$$48 + 3\frac{dy}{dt} = 0$$

$$3\frac{dy}{dt} = -48$$

$$\frac{dy}{dt} = -16$$