Total 15 Marks

1. Compared to the graph of the base function $f(x) = \sqrt{x}$, the graph of the function $g(x) = \sqrt{x} - 2$ is translated

A 2 units up

C 2 units to the left

B 2 units to the right

D 2 units down

2. Compared to the graph of the base function $f(x) = \sqrt{x}$, the graph of the function $g(x) = \sqrt{x-5}$ is translated

A 5 units down

C 5 units right

B 5 units left

D 5 units up

3. Compared to the graph of the base function $f(x) = \sqrt{x}$, the graph of the function $g(x) = \sqrt{5x}$ is

A compressed by a factor of $\frac{1}{5}$ and not reflected

B stretched by a factor of 5 and reflected in the y-axis

C compressed by a factor of $\frac{1}{5}$ and reflected in the y-axis

D stretched by a factor of 5 and not reflected

4. When the graph of $y = \sqrt{x}$ is vertically stretched by a factor of 3, the point (9, -10) will be translated to the point

A (-10, 9)

B (3, -30)

C (-30, 9)

D (9, -30)

5. Given the function $f(x) = \sqrt{x - h} + k$ with a domain of $\{x | x \ge -5, x \in R\}$ and a range of $\{y | y \ge 8, y \in R\}$, which of the following best describes the vertical and horizontal translations with respect to the graph of $f(x) = \sqrt{x}$?

A 5 units to the left and 8 units up

C 8 units to the left and 5 units up

B 8 units to the left and 5 units down

D 5 units to the left and 8 units down

6. Which point on the graph y = f(x) does not exist on the graph of $y = \sqrt{f(x)}$?

A (3,4)

C (-8, -3)

B (-4,4)

D (0.6, 2.7)

7. What is the solution to the radical equation $0 = 2\sqrt{2(x+4)} - 8$?

A –4

C 4

B 12

D 128

8. What is the solution to the radical equation $-10 = -10\sqrt{(x+7)}$?

A 6

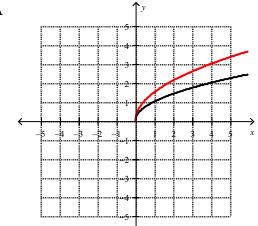
C 7

B 8

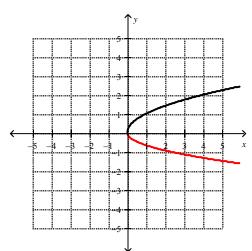
D -6

9. When solving the equation $\sqrt{x+8} = x+6$, which values must be checked for extraneous roots?

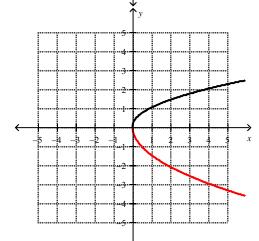
A −4 and 7

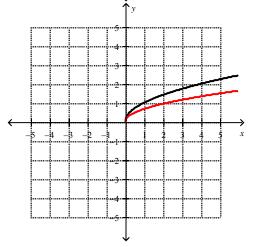

C 8 and 6

B 7 and −7


D -4 and -7

10. Which of the graphs shown below represents the base function $f(x) = \sqrt{x}$ (in black) and the stretched function $g(x) = -\frac{3}{2}\sqrt{x}$ (in red)?

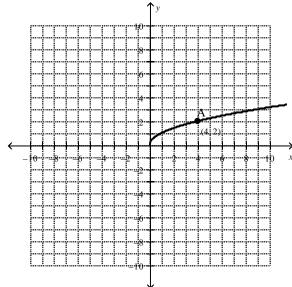

A


C

В

D

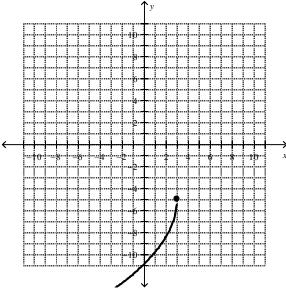
Which equation of a radical function would have the following domain and range? $\{x | x \ge -6, x \in R\}, \{y | y \ge 10, x \in R\}$


A
$$y = \sqrt{x-10} + 6$$

C
$$y = \sqrt{x+6} - 10$$

B
$$y = \sqrt{x+6} + 10$$

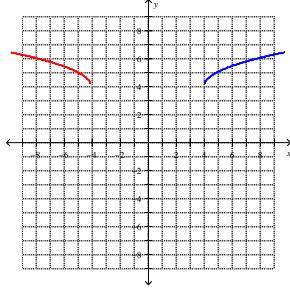
D
$$y = \sqrt{x+10} + 6$$


12. Given the graph of f(x) shown below, what are the coordinates of point A if the equation of the transformed function is g(x) = f(x) + 5?

- **A** (-1, 7)
- **B** (4, 7)

- C (4, -3) D (9, 7)

13. What is the equation of the radical function shown in the graph below?


A
$$f(x) = -2\sqrt{\frac{1}{-3}(x-5)} - 3$$

C
$$f(x) = -2\sqrt{-3(x-3)} - 5$$

B
$$f(x) = -2\sqrt{-3(x+3)} - 5$$

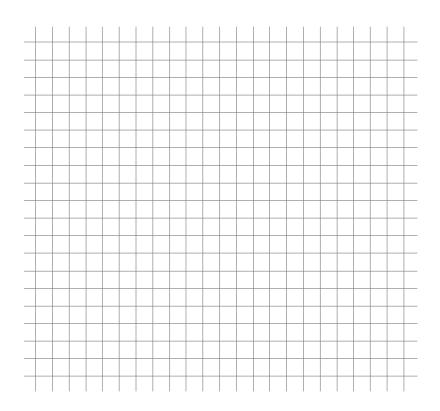
D
$$f(x) = -2\sqrt{\frac{1}{-3}(x-3)} - 5$$

14. The two functions in the graph shown are reflections of each other. Select the type of reflection(s).

- **A** a reflection in the y-axis
- **C** a reflection in the line y = x
- **B** a reflection in the x-axis and the y-axis
- **D** a reflection in the x-axis
- 15. If the value of f(x) satisfies f(x) > 1, then the graph of $y = \sqrt{f(x)}$ is _____ the graph of y = f(x).
 - **A** Above

C Below

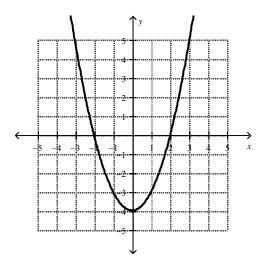
B Undefined


D None of the above

1. Given that $3y-6=-9\sqrt{x-4}$, complete the chart shown below. When identifying translations be sure that you indicate both the number of <u>units</u> and <u>direction</u> of the shift. [16]

Reflected in x-axis	YES	or	NO (circle correct solution)
Reflected in <i>y</i> -axis	YES	or	NO (circle correct solution)
Horizontal translation of			
Vertical translation of			
Horizontally stretched by a factor of			
Vertically stretched by a factor of			
Domain			
Range			

Write a mapping rule and sketch the curve in the space below.


$y = \sqrt{x}$		
X	у	
0	0	
1	1	
4	2	
9	3	

2. A student designs a special container as part of an egg drop experiment. She believes that the container can withstand a fall as long as the speed of the container does not exceed 100 ft/s. She uses the equation $v = \sqrt{(v_0)^2 + 2ad}$ to model the velocity, v, in feet per second, as a function of constant acceleration, a, in feet per second squared and the drop distance, d, in feet. (Note: The acceleration due to gravity is 32 ft/s^2 .)

What is the maximum height the egg can be dropped from? [3]

3. Using the graph of y = f(x), sketch the graph of $y = \sqrt{f(x)}$ and state the domain and range of each. [6]

4. Solve the following radical equation. $\sqrt{2x+15}-6=x$ [5]