Compound Interst - Day #2

i.
$$A = P(1 + \frac{1}{h})^{n+1}$$
 $A = 6300(1 + 0.016)^{24(6)}$
 $A = 6300(1.0006)^{144}$
 $A = 6300(1.100723856)$
 $A = \frac{4}{9324.56}$

2. $A = 2500(1 + 0.042)^{20}$
 $A = 2500(1.021)^{10}$
 $A = 2500(1.230998208)$
 $A = \frac{4}{3077.50}$
 $A = 3077.50$
 $A = 3077.50$

4.
$$A = P(1+\frac{1}{h})^{n+}$$
 $A = 3500(1+0.005)^{(24)(6)}$
 $A = 3500(1.00019230+)^{156}$
 $A = 3500(1.030451562)$
 $A = \frac{4}{3606.68}$

5. $A = P(1+\frac{1}{h})^{n+}$
 $A = 5000(1.075)^{(2)(10)}$
 $A = 5000(1.075)^{(2)(10)}$

7.
$$A = P(1 + \frac{1}{h})^{n+1}$$
 $A = 4200(1 + 0.0005) (565)(10)$
 $A = 4200(1.00000137)^{3650}$
 $A = 4200(1.005012517)$
 $A = 4221.05$

8. $A = P(1 + \frac{1}{h})^{n+1}$
 $A = 6400(1 + 0.062)^{(2)}(2)(5)$
 $A = 6400(1.031)^{10}$
 $A = 6400(1.357031264)$
 $A = 6400(1.357031264)$
 $A = 6400(1.357031264)$

Michael wants to invest \$7200. His bank offers an investment option that earns simple interest at a rate of 5.2% per year. If Michael makes \$352 in interest, how long did he invest the

money?
$$T = Pr+$$
 $T = 350$
 $P = 7200$
 $T =$

Calculate the final value of an initial investment of \$8500. Interest is paid at 3.8% per annum, compounded semi-annually, for three years.

$$A = P(1 + \frac{\sqrt{n}}{n})^{n+1}$$
 $P = 8500$
 $P = 8500(1 + \frac{\sqrt{n}}{n})^{n+1}$
 $P = 8500(1 + \frac{\sqrt{n}}{n})^{n+1}$