Questions from Homework

(a) c)
$$f(x) = -\frac{3}{x} + 5x^{-3}$$

 $F(x) = -3\ln|x| + \frac{5x^{-1}}{-1} + C$
 $F(x) = -3\ln|x| - \frac{5}{x} + C$

(a) d)
$$f(x) = x^{-7} + x^{-5} + x^{-3} + \frac{1}{x}$$

$$F(x) = \frac{x^{-6}}{-6} + \frac{x^{-4}}{-4} + \frac{x^{-3}}{-3} + \ln|x| + C$$

$$F(x) = -\frac{1}{6x^{6}} - \frac{1}{4}x^{4} - \frac{1}{3}x^{3} + \ln|x| + C$$

*(3) c)
$$f(x) = \sqrt{-x} = (-x)^{1/3}$$
 when you have a negative x under a radical sign!

$$F(x) = -\frac{3}{3}(-x)^{3/3} + C$$

$$F'(x) = -(-x)^{1/3}(-1)$$

$$= \sqrt{-x}$$

Warm Up

Determine the general antiderivative for the following:

- What would you differentiate that would give the function below?
- Remember add 1 to the exponent, then divide by this exponent.

Find the most general antiderivative of:

$$f'(x) = 7x^3 + 9x^2 + 8x - 1$$

$$f(x) = \frac{7}{4}x^4 + \frac{9}{4}x^3 + \frac{8}{4}x^3 - 1x + C$$

$$f(x) = \frac{7}{4}x^4 + 3x^3 + 4x^3 - x + C$$

Antiderivatives

This operation of determining the original function from its derivative is the inverse operation of **differentiation** and we call it **antidifferentiation**.

Definition: A function F is called an antiderivative of f on an interval f if F'(x) = f(x) for all f in f.

It should be emphasized that if F(x) is an antiderivative of f(x), then F(x) + C (C is any constant) is also an antiderivative of f(x).

[&]quot;F(x) is an antiderivative of f(x)"

Indefinite Integration

The process of antidifferentiation is often called **integration or indefinite integration.** To indicate that the antiderivative of $f(x) = 3x^2$ is $F(x) = x^3 + C$, we write

$$\int 3x^2 dx = x^3 + C$$

$$f(x) = 3x^{3}$$

 $F(x) = \frac{3}{3}x^{3} + 0 = x^{3} + 0$

We say that the **antiderivative or indefinite integral** of $3x^2$ with respect to x equals $x^3 + C$.

Examples:

Determine the general antiderivative:

$$f'(x) = 8x^{\frac{1}{2}} + 2x^{-3} + 5x - 1$$

$$f(x) = \frac{8x}{\frac{3}{3}} + \frac{2x}{-3} + \frac{5}{3}x^{3} - 1x + C$$

$$f(x) = \frac{16}{3}x^{3} - \frac{1}{x^{3}} + \frac{5}{3}x^{3} - x + C$$

$$\int (x^{5/6} - 3x^{9/2} + x^{-6} - 3x^{-1/2}) dx$$

$$= \frac{x}{11/6} - \frac{3x^{11/6}}{11/6} + \frac{x}{-5} - \frac{3x}{1/6} + C$$

$$= \frac{6}{11} x^{11/6} - \frac{6}{11} x^{11/6} - \frac{1}{5} x^{-5} - 6x^{1/6} + C$$

$$= \frac{6}{11} x^{11/6} - \frac{6}{11} x^{11/6} - \frac{1}{5} x^{-5} - 6x^{1/6} + C$$

Table of some of the Most General Antiderivatives

where a is a constant!

Function, f(x)	Most General Antiderivative, F(x)
a	ax + C
$ax^{n} (n \neq -1)$	$\frac{a}{n+1}x^{n+1}+C$
$\frac{a}{x} (x \neq 0)$	$a \ln x + C$
ae ^{kx}	$\frac{a}{k}e^{kx}+C$
a^{kx}	$\frac{a^{\times}}{k \ln a} + c$
a cosk∝	$\frac{a}{k}\sin kx + C$
$a \sin k\alpha$	$-\frac{a}{k}\cos kx + C$
$a \sec^2 kx$	$\frac{a}{k} \tan kx + C$
$a \sec kx \tan kx$	$\frac{a}{k}\sec kx + C$
a csckx cot kx	$-\frac{a}{k}\csc kx + C$
$a \csc^2 kx$	$-\frac{a}{k}\cot kx + C$
$\frac{a}{\sqrt{1-(kx)^2}}$	$\frac{a}{k}\sin^{-1}kx + C$
$\frac{a}{1+\left(kx\right)^2}$	$\frac{a}{k} \tan^{-1} kx + C$

Examples:

Determine the general antiderivative:

$$\int 5e^x dx = \frac{5}{1}e^{1x} + C$$
$$= 5e^x + C$$

Note: Constants do not change these but powers do

$$f(x) = \frac{10}{x}$$

$$F(x) = 10 \ln |x| + C$$

All of these have a linear power of x (that is x is to the power of one).

Examples:

Determine the general antiderivative:

$$\int e^{10x} dx$$
If there is a constant in front of the linear x then divide by that constant (do not add one to the constant for these simple integrals).
$$= \frac{1}{10} e^{10x} + C$$

$$\int (e^{5x} - 4e^{6x} + \sin 12x - \sec^2 8x) dx$$
=\frac{1}{5} \end{6} \frac{4}{6} \end{6} \frac{1}{10} \cos 10 \times - \frac{1}{10} \cos 10 \times - \frac{1}{8} \tan 8x + C

=\frac{1}{5} \end{6} \frac{5x}{3} - \frac{3}{10} \frac{6x}{10} - \frac{1}{8} \tan 8x + C

$$\int x^{3} + 9x^{-5} + \frac{2}{x} + 7e^{-2x} dx$$

$$= \underbrace{x^{4}}_{4} + \underbrace{9x^{4}}_{-4} + \underbrace{3\ln x}_{+2} + \underbrace{7e^{-2x}}_{-2} + C$$

$$= \underbrace{x^{4}}_{4} - \underbrace{9}_{4x^{4}} + \underbrace{3\ln x}_{-2} - \underbrace{7}_{2e^{2x}}_{+2} + C$$

Practice Problems...

Page 408

#4, 5, 6, 7

Antiderivatives involving chain rule...

Remember how the Chain Rule works...

$$f(x) = [g(x)]^n$$

$$f'(x) = n[g(x)]^{n-1}g'(x)$$

Identifying a unique solution for an antiderivative

Examples:

Determine the function with the given derivative whose graph satisfies the initial condition provided.

1.
$$f'(x) = 2x - \cos x + 1$$
, $f(0) = 3$

2.
$$f''(x)=12x^2+6x-4$$
, $f(0)=4$ and $f(1)=1$

$$f(x) = 2\sqrt[4]{x^5} - \frac{3}{x^2} + xe^{-8x^2} - \frac{2x}{1+x^4} + \frac{2}{5x} + 3x^3\cos 5x^2$$