# **Understanding Logarithms**

#### Focus on...

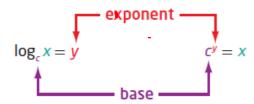
- demonstrating that a logarithmic function is the <u>inverse</u> of an exponential function
- sketching the graph of  $y = \log_c x$ , c > 0,  $c \ne 1$
- determining the characteristics of the graph of  $y = \log_c x$ , c > 0,  $c \ne 1$
- · explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

## exponental

For the exponential function  $y = c^x$ , the inverse is  $x = c^y$ . This inverse is also a function and is called a **logarithmic function**. It is written as  $y = \log_c x$ , where c is a positive number other than 1. e (ogarithmic

### **Logarithmic Form**

#### **Exponential Form**



Since our number system is based on powers of 10, logarithms with base 10 are widely used and are called **common logarithms**. When you write a common logarithm, you do not need to write the base. log. 150 = log 150 For example,  $\log 3$  means  $\log_{10} 3$ .

## logarithmic function

 a function of the form \*\* an exponent  $y = \log_{c} x$ , where c > 0 and  $c \neq 1$ , that is the inverse of the exponential function  $y = c^x$ 

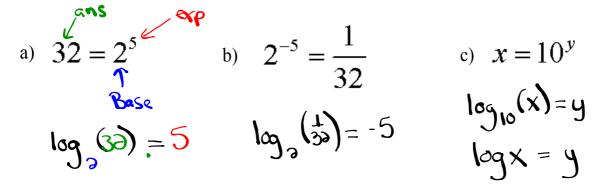
## logarithm

- - in  $x = c^y$ , y is called the logarithm to base c of x

# common logarithm

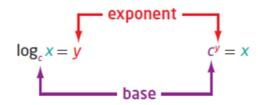
 a logarithm with base 10

Write each of the following in logarithmic form



**Logarithmic Form** 

#### **Exponential Form**



Write each of the following in exponential form

a) 
$$\log_4 16 = 2$$
Base
b)  $\log_2 \left(\frac{1}{32}\right) = -5$ 
c)  $\log 65 = 1.8129$ 

$$4^{3} = 16$$
  $3^{-5} = \frac{1}{30}$   $10^{1.8139} = 65$ 

# Example 1

### **Evaluating a Logarithm**

Evaluate.

a) 
$$\log_7 49 = 3$$

**b)** 
$$\log_6 1 = 0$$

c) 
$$\log 0.001 = -3$$
 d)  $\log_2 \sqrt{8} = 1.5$ 

**d)** 
$$\log_2 \sqrt{8} = 1.5$$

$$\frac{\log 1}{\log 6} = 0$$

$$\frac{\log 0.001}{\log 10} = -3 \qquad \frac{\log 58}{\log 9} = 1.5$$

$$X = \log_7 49$$

$$10^{x} = 0.001$$
  $3^{x} = \sqrt{8}$ 

$$\mathbf{v} = \lambda$$

$$x = 0$$

$$9^{x} = (\frac{3}{2})^{x}$$

109.49=3

$$\left[ \left| \log 6.001 \right|^{-3} \right] \lambda^{x} = \lambda^{3/3}$$

$$\lambda = \lambda^{3/5}$$

# Example 2

# Determine an Unknown in an Expression in Logarithmic Form

Determine the value of x. (convert to exponential form)

- a)  $\log_5 x = -3$
- **b)**  $\log_x 36 = 2$
- c)  $\log_{64} x = \frac{2}{3}$

a) 
$$\log_5 x = -3$$
 ( $\log_5 x = -3$ )
$$5^{-3} = \times (\exp_5 x = -3)$$

$$(\frac{1}{5})^3 = \times$$

$$\sqrt{\frac{192}{1}} = \chi$$

c) 
$$\log_{64} X = \frac{3}{3} (\log_{10} form)$$

$$16 = x$$

b) log 36 = 2 (log. Sorm) x<sup>2</sup> = 36 (exp. Sorm)

$$\chi^2 = 36$$
 (exp. form)

$$\begin{array}{c} \chi = -6 \\ \hline \chi = 6 \end{array}$$

Chapter 7 Inverse Chapter 8

Exponential 
$$y = \log_e x$$
,  $c > 0$ ,  $c \neq 1$ 

D:  $\{x \mid x > 0, x \in R\}$  or  $\{x \mid y > 0, y \in R\}$  or  $\{x \mid y > 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{x \mid y \neq 0, y \in R\}$  or  $\{$ 

## Example 3

## Graph the Inverse of an Exponential Function

- a) State the inverse of  $f(x) = 3^x$ .
- b) Sketch the graph of the inverse. Identify the following characteristics of the inverse graph: (x, y) -> (y, x)
  - the domain and range
  - the x-intercept, if it exists
  - the y-intercept, if it exists
  - · the equations of any asymptotes

The equations of any asymptotes

$$y = 3^{x}$$

$$y = 3^{x}$$

$$x = 3^{y} (exp. form)$$

$$\log_{3} x = y (\log_{3} form)$$

$$y = \log_{3} x$$

$$\int_{-1}^{1} (x) = \log_{3} x$$

$$x = y$$

$$\frac{1}{\sqrt{3}} = \log_{3} x$$

$$\frac$$

#### Solution

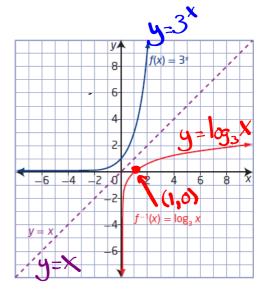
a) The inverse of  $y = f(x) = 3^x$  is  $x = 3^y$  or, expressed in logarithmic form,  $y = \log_3 x$ . Since the inverse is a function, it can be written in function notation as

How do you know that  $y = \log_3 x$  is a function?

**b)** Set up tables of values for both the exponential function, f(x), and its inverse,  $f^{-1}(x)$ . Plot the points and join them with a smooth curve.

| $\mathbf{y} = 3^{\mathbf{X}}$ $f(x) = 3^{x}$ |                             |  |
|----------------------------------------------|-----------------------------|--|
| X                                            | У                           |  |
| -3                                           | <u>1</u><br>27              |  |
| -2                                           | 1<br>27<br>1<br>9<br>1<br>3 |  |
| -1                                           | <u>1</u><br>3               |  |
| 0                                            | 1                           |  |
| 1                                            | 3                           |  |
| 2                                            | 9                           |  |
| 3                                            | 27                          |  |

| $y = \log_3 x$ $f^{-1}(x) = \log_3 x$ |    |  |
|---------------------------------------|----|--|
| $f^{-1}(x) = \log_3 x$                |    |  |
| X                                     | У  |  |
| <u>1</u><br>27                        | -3 |  |
| $\frac{\frac{1}{27}}{\frac{1}{9}}$    | -2 |  |
| <u>1</u><br>3                         | -1 |  |
| 1                                     | 0  |  |
| 3                                     | 1  |  |
| 9                                     | 2  |  |
| 27                                    | 3  |  |



The graph of the inverse,  $f^{-1}(x) = \log_3 x$ , is a reflection of the graph

of  $f(x) = 3^x$  about the line y = x. For  $f^{-1}(x) = \log_3 x$ ,

• the domain is  $\{x \mid x > 0, x \in R\}$  and the range is  $\{y \mid y \in R\}$  or  $(-\infty, \infty)$ 

- the x-intercept is 1  $\propto (1,6)$
- · there is no y-intercept
- the vertical asymptote, the y-axis, has equation x = 0; there is no horizontal asymptote

How do the characteristics of  $f^{-1}(x) = \log_3 x$  compare to the characteristics of  $f(x) = 3^x$ ?

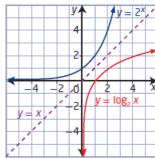
#### **Key Ideas**

- A logarithm is an exponent.
- Equations in exponential form can be written in logarithmic form and vice versa.

Exponential Form Logarithmic Form  $x = c^y$   $y = \log_c x$ 

- The inverse of the exponential function  $y=c^x$ , c>0,  $c\neq 1$ , is  $x=c^y$  or, in logarithmic form,  $y=\log_c x$ . Conversely, the inverse of the logarithmic function  $y=\log_c x$ , c>0,  $c\neq 1$ , is  $x=\log_c y$  or, in exponential form,  $y=c^x$ .
- The graphs of an exponential function and its inverse logarithmic function are reflections of each other in the line y = x, as shown.
- For the logarithmic function  $y = \log_c x$ , c > 0,  $c \neq 1$ ,
  - the domain is  $\{x \mid x > 0, x \in \mathbb{R}\}$
  - the range is  $\{y \mid y \in R\}$
  - the x-intercept is 1
  - the vertical asymptote is x = 0, or the *y*-axis
- A common logarithm has base 10. It is not necessary to write the base for common logarithms:



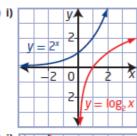


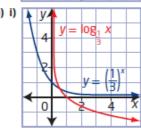
# Homework

#1-5, 8, 10, 12, 13, 17 on page 380

#### 8.1 Understanding Logarithms, pages 380 to 382

1. a) i)



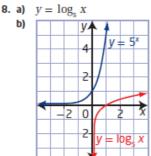


- 2. a)  $\log_{12} 144 = 2$ 
  - c)  $\log_{10} 0.000 \ 01 = -5$
- 3. a)  $5^2 = 25$ 
  - c)  $10^6 = 1000000$
- **4. a)** 3
- **b)** 0
- **5.** a = 4; b = 5

- ii)  $y = \log_2 x$
- iii) domain  $\{x \mid x > 0, x \in R\},\$ range  $\{y \mid y \in R\}$ , x-intercept 1, no y-intercept, vertical asymptote x = 0
- ii)  $y = \log_1 x$
- iii) domain  $\{x\mid x>0,\,x\in R\},$ range  $\{y \mid y \in R\}$ ,

x-intercept 1, no y-intercept, vertical asymptote

- **b)**  $\log_8 2 = \frac{1}{3}$
- $\log_{7}(y+3)=2x$
- $8^{\frac{2}{3}} = 4$
- $11^y = x + 3$
- d) -3



domain  $\{x \mid x > 0, x \in R\}$ , range  $\{y \mid y \in R\}$ , x-intercept 1, no y-intercept, vertical asymptote x = 0

**d)** 8

- **10.** They are reflections of each other in the line y = x.
- 11. a) They have the exact same shape.
  - One of them is increasing and the other is decreasing.
- 12. a) 216
- **b)** 81
- 13. a) 7
- **b)** 6 b)
- 14. a) 0 **15**. −1
- **16.** 16
- **17.** a)  $t = \log_{1.1} N$
- b) 145 days

c) 64

- 18. The larger asteroid had a relative risk that was 1479 times as dangerous.
- 19. 1000 times as great
- **20.** 5
- **21.** m = 14, n = 13
- **22.** 4n
- **23.**  $y = 3^{2^x}$