Fractional Exponents

Fractional Exponent?

on calculator!

What if...

Fractional Exponents

to

Radicals

$$= (\sqrt[3]{195})^3$$

$$= (\sqrt[3]{5} \times 5 \times 5)$$

$$= (5)^3$$

$$= (5)^3$$

$$= (5)^3$$

Express the radical as a power.

Index > denominator

exponent > numerator

radicand > base

Making Connections

 $100(0.87)^{1/2}$

Coffee, Tea, and Hot Chocolate contain caffeine.

The expression $100(0.87)^{1/2}$

represents the percent of caffeine left in your body 1/2 hour after you drink a caffeine beverage

How can you estimate the value of 0.871/2

Let's Take a Gloser Look!!

Fill in the chart. (You can use your calculator!!)

x	$x^{\frac{1}{2}}$
1	$1^{\frac{1}{2}} = \sqrt{1} = 1$
4	$4^{\frac{1}{2}} = \sqrt{4} = 3$
9	9'8=59=3
16	16'3 = \$16 = 4
25	2513=155=5

x	$x^{\frac{1}{3}}$
1	13 = 3T = 1
8	6 = 8% = 38
27	27 ^{1/3} = V27 = 3
64	01 ³ = 364 = 4
125	125 1/3 = 3/05 = 5

What do you notice?

Our Conclusion

- Raising a number to an exponent of 1/2 is equivalent to taking the square root!
- Raising a number to an exponent of 1/3 is equivalent to taking the cube root!

Practice Questions

Calculate each of the following without using a calculator:

27 1/3	1001/2	161/4
= 3/37	= 1100	= 4516
$= 33\times3\times3$	= J2X2X5X5	= 45000000000000000000000000000000000000
= 3	= 2x5 = 10	= 9

Calculate each of the following without using a calculator:

360.5

320.2

6250.25

$$= 36^{1/3}$$

$$=39/2$$

Calculate each of the following without using a calculator:

$$\frac{43/2}{4\sqrt{3}} = \sqrt{3}$$

$$= \sqrt{3}$$

$$= \sqrt{3}$$

$$= \sqrt{3}$$

$$= \sqrt{3}$$

Therefore:
$$\mathbf{x}^{\mathbf{m}/\mathbf{n}} = (\sqrt[n]{\mathbf{x}})^{\mathbf{m}}$$

Write as a power:

$$\left(\frac{4}{\sqrt{625}}\right)^{9} = 605^{9}$$

Calculate the following

without using a calculator:

Calculate the following

without using a calculator:

Check out page 227.

Questions:

5, 6,
Anything to the
7a,b, f
power of O equals
8,

10a,c,f, 11, 15 $Ex': 7^{\circ} = 1$ $15^{\circ} = 1$ $(-3)^{\circ} = 1$

$$(3)^{3.5}$$

$$= (3)^{3/5}$$

$$= (3)^{5/5}$$

$$= (3)^{5/5}$$

$$= (3)^{5/5}$$

$$= (3)^{5/5}$$

Check out page 227 of your text book. Questions:

5, 6, 7a,b, f 8,10a,c,f,11

To multiply powers with the same base youadd.

$$a^m \times a^n = a^{m+n}$$

Examples: $x 5^2 = 5^5$

$$x 5^2 = 5^5$$

$$x 8^2 = 8^7$$

$$\sqrt{4^2 = 4^6}$$

$$5^{1/2} \times 5^{1/2} = 5$$

This can also be written like:

$$\sqrt{5} \times \sqrt{5} = \sqrt{25}$$

$$= 5$$

This can also be written like:

