Warm-Up

Norizontal

(Change sign)

8. Copy and complete the table.
$$y = f(x-h) + k$$

Translation	Transformed Function	Transformation of Points	vertical
vertical	$y = f(x) + \underline{5}$	$(x, y) \rightarrow (x, y + 5)$	K=5 (Up)
horizontal	y = f(x + 7)	$(x, y) \rightarrow (x-7, y)$	h=-7 (Left)
horizontal	y = f(x - 3)	$(x,y) \rightarrow (x+3,y)$	h= 3 (Right)
vertical	y = f(x) -6 y = f(x) -9	$(x,y) \rightarrow (x,y-6)$	K=-6 (Down)
horizontal and vertical	y + 9 = f(x + 4)	$(x,y) \rightarrow (x-4,y-9)$	h=-4 K=-9 Left Down
and vertical	y=5(x-4)-6	$(x, y) \rightarrow (x \pm 4, y \pm 6)$	109 .
h+V	y = f(x+3) + 3	$(x, y) \rightarrow (x = 2, y + 3)$	h = -3 $h = 3$
horizontal and vertical	y = f(x - h) + k		•

Questions from Homework

Transformations:

New Functions From Old Functions

Translations

Stretches

Reflections

Reflections and Stretches

Focus on...

- developing an understanding of the effects of reflections on the graphs of functions and their related equations
- developing an understanding of the effects of vertical and horizontal stretches on the graphs of functions and their related equations

A reflection of a graph creates a mirror image in a line called the line of reflection. Reflections, like translations, do not change the shape of the graph. However, unlike translations, reflections may change the orientation of the graph.

Vertical (effection $(x,y) \rightarrow (x,-y)$ • When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the <u>x-axis</u>.

Horizontal Reflection $(x,y) \rightarrow (-x,y)$ • When the input of a function y = f(x) is multiplied by -1, the result,

• When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the <u>y-axis</u>.

invariant point

- a point on a graph that remains unchanged after a transformation is applied to it
- any point on a curve that lies on the line of reflection is an invariant point

- a) Given the graph of y = f(x), graph the functions y = -f(x) and y = f(-x).
- **b)** How are the graphs of y = -f(x) and y = f(-x) related to the graph of y = f(x)?

Remember...

- When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the *x*-axis.
- Sketch y = -f(x) on the axis below (Vertical Reflection)

Remember...

- When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the *y*-axis.
- Sketch y = f(-x) on the axis below Horizontal reflection

Homework

*
$$f(-4) = \partial(-4) + 1$$
= -8+1 Page 28 #1, 3, 4

Vertical
$$f(x) = \partial x + 1$$

$$g(x) = -f(x)$$

$$h(x) = f(-x)$$

$$x \mid y$$

$$-4 \mid -7$$

$$- \partial \mid -3$$

$$0 \mid 1$$

$$0 \mid -1$$

- D'{X|XER} R'{Y|YER}
- D'EXIXER] B'EYIYER]

b)
$$g(x) = x^{3}+1$$
 $g(x) = -(x^{3}+1)$
 $-3 + 5$ $-1 + 3$
 $-1 + 3$ $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 + 3$
 $-1 +$

- D. {X|Xer}
- B. {y|y2|,yer}
- D'. {XIXER}
- R: {y | y ≤ i, y ∈ R}

stretch

- a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor
- scale factors between 0 and 1 result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection

Vertical and Horizontal Stretches

A **stretch**, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

- When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.
- When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

Vertical Stretch or Compression...

• When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.

Example 2

Graph y = af(x)

Given the graph of y = f(x),

- transform the graph of f(x) to sketch the graph of g(x)
- describe the transformation
- · state any invariant points
- state the domain and range of the functions

a)
$$g(x) = 2f(x)$$

b)
$$g(x) = \frac{1}{2}f(x)$$

a)
$$g(x) = 2f(x)$$

The invariant points are

and

For f(x), the domain is

and the range is

For g(x), the domain is and the range is

b)
$$g(x) = \frac{1}{2}f(x)$$

The invariant points are

and

For f(x), the domain is

and the range is

For g(x), the domain is and the range is

Horizontal Stretch or Compression...

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

Example 3

Graph y = f(bx)

Given the graph of y = f(x),

- transform the graph of f(x) to sketch the graph of g(x)
- · describe the transformation
- state any invariant points
- state the domain and range of the functions

a)
$$g(x) = f(2x)$$

b)
$$g(x) = f(\frac{1}{2}x)$$

a)
$$g(x) = f(2x)$$

The invariant point is

For f(x), the domain is

or and the range is

or

For g(x), the domain is

or and the range is

or

$$b) g(x) = f\left(\frac{1}{2}x\right)$$

The invariant point is

For f(x), the domain is and the range is

For g(x), the domain is and the range is

Horizontal Stretch or Compression...

Horizontal Stretch or Compression...

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

$$y = -3f(-2x) + 7$$

Homework

Day 3 - Reflections after.notebook				

Determine the Equation of a Translated Function:

September 12, 2016

