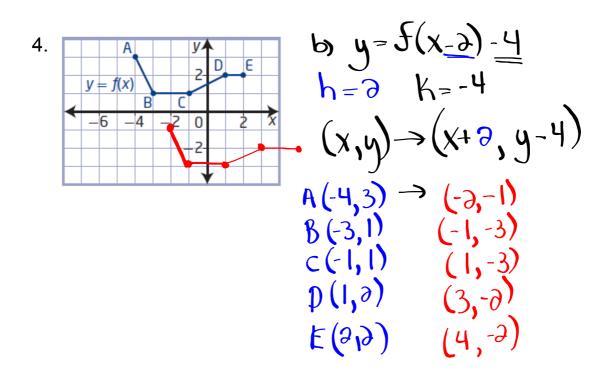
Warm-Up

8. Copy and complete the table.
$$y = f(x-h) + k$$

Transformed Transformation of Function Points

Translation	Transformed Function	Transformation of Points	vertical
vertical	$y = f(x) + \underline{5}$	$(x, y) \rightarrow (x, y + 5)$	K=5 (Up)
horizonta	$y = f(x \pm 7)$	$(x, y) \rightarrow (x - 7, y)$	h=-7 (Left)
horizontal	y = f(x - 3)	$(x,y) \rightarrow (x+3,y)$	h= 3 (Right)
vertical	y = f(x) - 6	$(x,y) \rightarrow (x, y-b)$	K=-6 (Down)
horizontal and vertical	y = f(x + 4) - 9 y + 9 = f(x + 4)	$(x,y) \rightarrow (x-4, y-9)$	h=-4 K=-9 Left Down
and vertical	y=1(x-4)-6	$(x, y) \rightarrow (x \pm 4, y \pm 6)$	h=4 K=-6 Right Down
h +V	y = f(x+3) + 3	$(x, y) \rightarrow (x = 2, y + 3)$	h = -3 $h = 3$
horizontal and vertical	y = f(x - h) + k	(x,y) -> (x+h,y+	$\langle \rangle$

Questions from Homework



Transformations:

New Functions From Old Functions

Translations

Stretches

Reflections

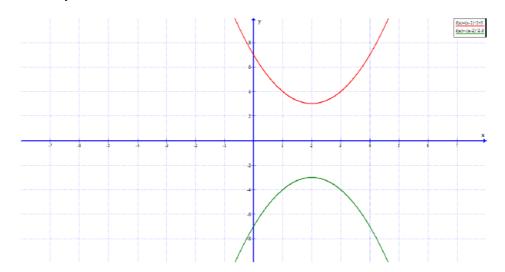
Reflections and Stretches

Focus on...

- developing an understanding of the effects of reflections on the graphs of functions and their related equations
- developing an understanding of the effects of vertical and horizontal stretches on the graphs of functions and their related equations

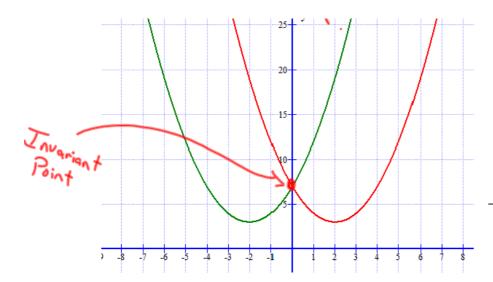
A reflection of a graph creates a mirror image in a line called the line of reflection. Reflections, like translations, do not change the shape of the graph. However, unlike translations, reflections may change the orientation of the graph.

Vertical reflection $(x,y) \rightarrow (x,-y)$ • When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the x-axis.



Horizontal Reflection $(x,y) \rightarrow (-x,y)$ • When the input of a function y = f(x) is multiplied by -1, the result,

• When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the y-axis.



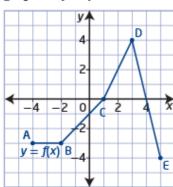
invariant point

- a point on a graph that remains unchanged after a transformation is applied to it
- any point on a curve that lies on the line of reflection is an invariant point

Example 1

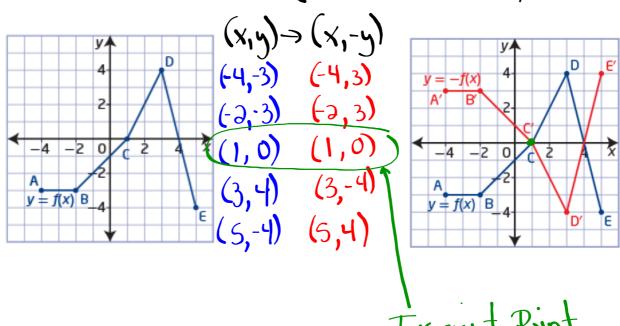
Compare the Graphs of y = f(x), y = -f(x), and y = f(-x)

- a) Given the graph of y = f(x), graph the functions y = -f(x) and y = f(-x).
- **b)** How are the graphs of y = -f(x) and y = f(-x) related to the graph of y = f(x)?



Remember...

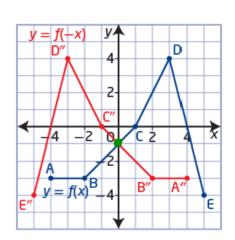
- When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the *x*-axis.
- Sketch y = -f(x) on the axis below (Vertical Reflection)



Remember...

- When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the *y*-axis.
- Sketch y = f(-x) on the axis below Horizontal reflection





Homework

$$+5(-4) = 3(-4)+1$$
 Page 28 #1, 3, 4
= -8+1
= -7 Vertical

Horizontal
$$h(x) = f(-x)$$

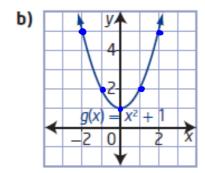
$$\frac{x}{4} - 7$$

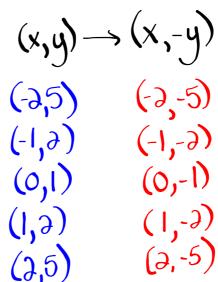
$$\frac{3}{7} - 3$$

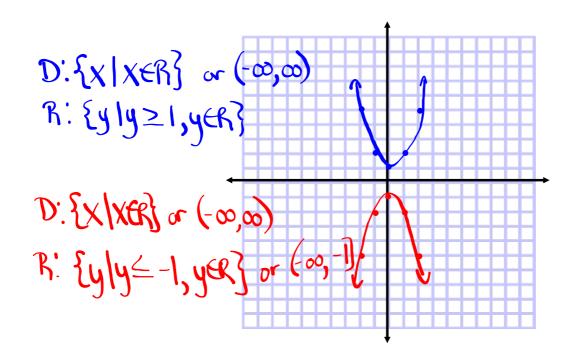
$$\frac{3}{7} - \frac{3}{7} -$$

Questions from Homework

- 3. Consider each graph of a function.
 - Copy the graph of the function and sketch its reflection in the x-axis on the same set of axes.
 - State the equation of the reflected function in simplified form.
 - State the domain and range of each function.







Vertical and Horizontal Stretches

A **stretch**, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

- When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.
- When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

stretch

- a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor
- scale factors between \(\) \

* If you can't see a value in place of a or b"
then we let them equal 1

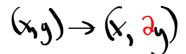
12

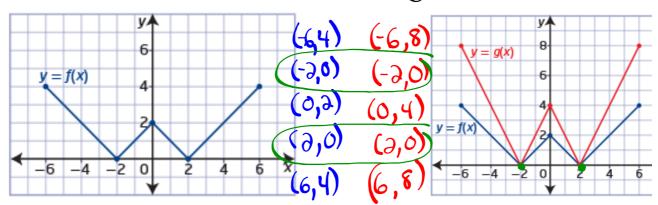
Vertical Stretch or Compression...

• When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.

a= 2 -> Vertical Stretch by a factor of 2

a)
$$g(x) = 2f(x)$$





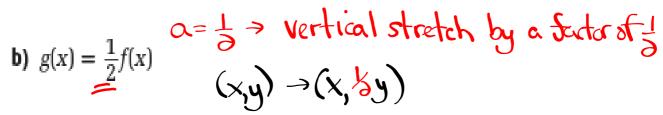
The invariant points are (-2, 0) and (2, 0).

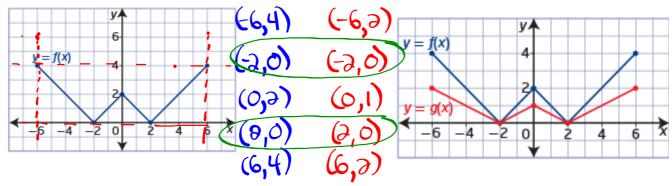
 $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is

and the range is

 $\{y \mid 0 \le y \le 4, y \in \mathbb{R}\}, \text{ or } [0, 4].$

For g(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 8, y \in \mathbb{R}\}$, or [0, 8].





The invariant points are (-2, 0) and (2, 0).

For f(x), the domain is

 $\{x \mid -6 \le x \le 6, x \in R\}, \text{ or } [-6, 6],$

and the range is

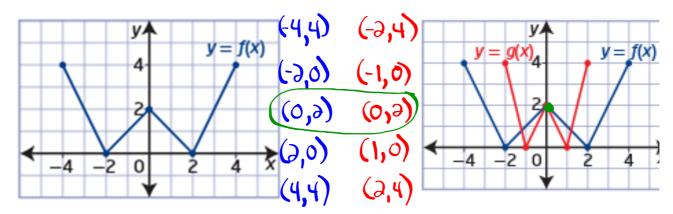
 $\{y \mid 0 \leq y \leq 4, \, y \in \, \mathbb{R}\}, \, \text{or} \, [0,\, 4].$

For g(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 2, y \in R\}$, or [0, 2].

Horizontal Stretch or Compression ... (Reciprocal)

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

b=2 \rightarrow Horizontal Stretch by a factor $\frac{1}{\partial}$ a) g(x) = f(2x) $(x,y) \rightarrow (\frac{1}{\partial}x,y)$



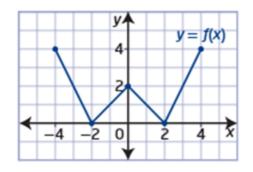
The invariant point is (0, 2).

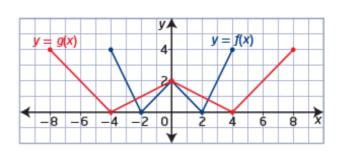
For f(x), the domain is $\{x \mid -4 \le x \le 4, x \in R\}$, or [-4, 4], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

For g(x), the domain is $\{x \mid -2 \le x \le 2, x \in \mathbb{R}\}$, or [-2, 2], and the range is $\{y \mid 0 \le y \le 4, y \in \mathbb{R}\}$, or [0, 4].

b)
$$g(x) = f\left(\frac{1}{2}x\right)$$

 $b = 5 \rightarrow \text{Horizonta}$



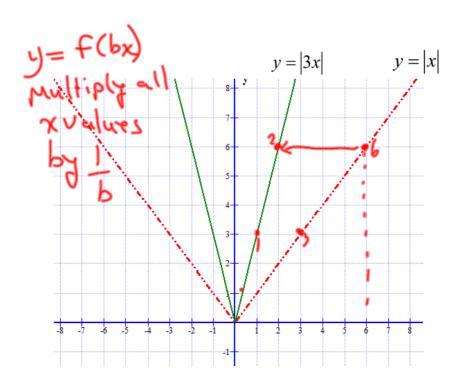


The invariant point is (0, 2).

For f(x), the domain is $\{x \mid -4 \le x \le 4, x \in R\}$, or [-4, 4], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

For g(x), the domain is $\{x \mid -8 \le x \le 8, x \in R\}$, or [-8, 8], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

Horizontal Stretch or Compression...



Horizontal Stretch or Compression...

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

$$y = -3f(-2x) + 7$$

Homework

Page 28 # 2, 5, 6, 7

Day 4 - Stretches after.notebook	(
----------------------------------	---

Determine the Equation of a Translated Function:

