Warm-Up 8. Copy and complete the table. $$y = f(x-h) + k$$ Transformed Transformation of Function Points | Translation | Transformed
Function | Transformation of
Points | vertical | |----------------------------|--------------------------------------|---|------------------------| | vertical | $y = f(x) + \underline{5}$ | $(x, y) \rightarrow (x, y + 5)$ | K=5 (Up) | | horizonta | $y = f(x \pm 7)$ | $(x, y) \rightarrow (x - 7, y)$ | h=-7 (Left) | | horizontal | y = f(x - 3) | $(x,y) \rightarrow (x+3,y)$ | h= 3 (Right) | | vertical | y = f(x) - 6 | $(x,y) \rightarrow (x, y-b)$ | K=-6 (Down) | | horizontal
and vertical | y = f(x + 4) - 9
y + 9 = f(x + 4) | $(x,y) \rightarrow (x-4, y-9)$ | h=-4 K=-9
Left Down | | and vertical | y=1(x-4)-6 | $(x, y) \rightarrow (x \pm 4, y \pm 6)$ | h=4 K=-6
Right Down | | h +V | y = f(x+3) + 3 | $(x, y) \rightarrow (x = 2, y + 3)$ | h = -3 $h = 3$ | | horizontal
and vertical | y = f(x - h) + k | (x,y) -> (x+h,y+ | $\langle \rangle$ | # **Questions from Homework** # **Transformations:** **New Functions From Old Functions** Translations **Stretches** Reflections # Reflections and Stretches #### Focus on... - developing an understanding of the effects of reflections on the graphs of functions and their related equations - developing an understanding of the effects of vertical and horizontal stretches on the graphs of functions and their related equations A reflection of a graph creates a mirror image in a line called the line of reflection. Reflections, like translations, do not change the shape of the graph. However, unlike translations, reflections may change the orientation of the graph. Vertical reflection $(x,y) \rightarrow (x,-y)$ • When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the x-axis. Horizontal Reflection $(x,y) \rightarrow (-x,y)$ • When the input of a function y = f(x) is multiplied by -1, the result, • When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the y-axis. #### invariant point - a point on a graph that remains unchanged after a transformation is applied to it - any point on a curve that lies on the line of reflection is an invariant point ### Example 1 #### Compare the Graphs of y = f(x), y = -f(x), and y = f(-x) - a) Given the graph of y = f(x), graph the functions y = -f(x) and y = f(-x). - **b)** How are the graphs of y = -f(x) and y = f(-x) related to the graph of y = f(x)? ## Remember... - When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the *x*-axis. - Sketch y = -f(x) on the axis below (Vertical Reflection) ### Remember... - When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the *y*-axis. - Sketch y = f(-x) on the axis below Horizontal reflection ## Homework $$+5(-4) = 3(-4)+1$$ Page 28 #1, 3, 4 = -8+1 = -7 Vertical Horizontal $$h(x) = f(-x)$$ $$\frac{x}{4} - 7$$ $$\frac{3}{7} - 3$$ $$\frac{3}{7} - \frac{3}{7} -$$ ## Questions from Homework - 3. Consider each graph of a function. - Copy the graph of the function and sketch its reflection in the x-axis on the same set of axes. - State the equation of the reflected function in simplified form. - State the domain and range of each function. #### Vertical and Horizontal Stretches A **stretch**, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph. - When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis. - When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis. ### stretch - a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor - scale factors between \(\) \ * If you can't see a value in place of a or b" then we let them equal 1 12 # Vertical Stretch or Compression... • When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis. a= 2 -> Vertical Stretch by a factor of 2 a) $$g(x) = 2f(x)$$ The invariant points are (-2, 0) and (2, 0). $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is and the range is $\{y \mid 0 \le y \le 4, y \in \mathbb{R}\}, \text{ or } [0, 4].$ For g(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 8, y \in \mathbb{R}\}$, or [0, 8]. The invariant points are (-2, 0) and (2, 0). For f(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}, \text{ or } [-6, 6],$ and the range is $\{y \mid 0 \leq y \leq 4, \, y \in \, \mathbb{R}\}, \, \text{or} \, [0,\, 4].$ For g(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 2, y \in R\}$, or [0, 2]. # Horizontal Stretch or Compression ... (Reciprocal) • When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis. b=2 \rightarrow Horizontal Stretch by a factor $\frac{1}{\partial}$ a) g(x) = f(2x) $(x,y) \rightarrow (\frac{1}{\partial}x,y)$ The invariant point is (0, 2). For f(x), the domain is $\{x \mid -4 \le x \le 4, x \in R\}$, or [-4, 4], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4]. For g(x), the domain is $\{x \mid -2 \le x \le 2, x \in \mathbb{R}\}$, or [-2, 2], and the range is $\{y \mid 0 \le y \le 4, y \in \mathbb{R}\}$, or [0, 4]. **b)** $$g(x) = f\left(\frac{1}{2}x\right)$$ $b = 5 \rightarrow \text{Horizonta}$ The invariant point is (0, 2). For f(x), the domain is $\{x \mid -4 \le x \le 4, x \in R\}$, or [-4, 4], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4]. For g(x), the domain is $\{x \mid -8 \le x \le 8, x \in R\}$, or [-8, 8], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4]. # Horizontal Stretch or Compression... # Horizontal Stretch or Compression... • When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis. $$y = -3f(-2x) + 7$$ # Homework Page 28 # 2, 5, 6, 7 | Day 4 - Stretches after.notebook | (| |----------------------------------|---| |----------------------------------|---| Determine the Equation of a Translated Function: