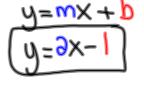
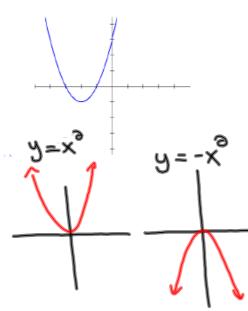

Catalog of Essential Functions

1. Linear



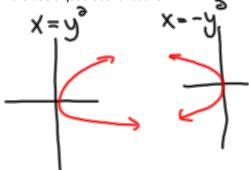
Straight Line

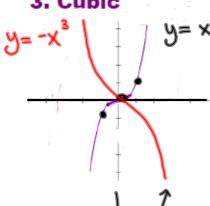


Equation will be degree one

Should be able to identify the **slope**, **intercepts**, **and equation** from the graph

2. Quadratic


Parabola (U-Shaped)

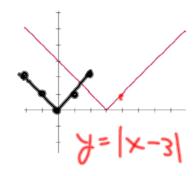

Either *y or x* will be squared (not both!)

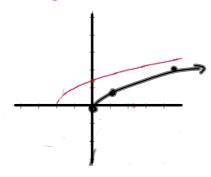
Should know the 4 basic quadratic functions

Should be able to apply transformations to the basic quadratic functions

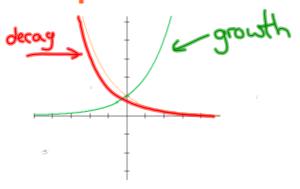
3. Cubic

S-Shaped / N-shaped


We will work with functions that are raised to the third power


max 3 roots

Catalog of Essential Functions


4. Absolute Value

5. Square Root

6. Exponential

V-Shaped

Equation will have a variable within the absolute value bars

Should be able to apply transformations to the basic absolute value function

Half Parabola

Equation will have a variable under the square root sign

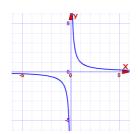
Should be able to apply transformations to the basic square root function

$$y = \sqrt{x}$$

$$y = \sqrt{x}$$

$$y = \sqrt{x}$$

$$y = \sqrt{y}$$

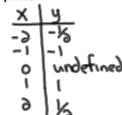

Steadily increasing or decreasing

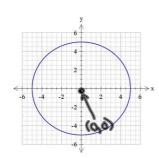
Base will be a number and variable will appear in the exponent

Should be able to identify the *horizental* asymptote

Catalog of Essential Functions

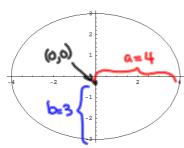
7. Reciprocal




Will have two branches

Equation will have a variable within the denominator of a rational expression

Should be able to identify the vertical and horizontal asymptotes



• General form: $(x-h)^2 + (y-k)^2 = r^2$

• Be able to identify the function that would describe either just the top or bottom of the circle.

$$(x-0)^3+(y-0)^2=5^3$$

9. Ellipse

• General form: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

Where..

- Center: (h, k)
- a > b
- If a is the denominator of the "y" term the ellipse will have a vertical major axis

$$\frac{(x-0)^3}{4^3} + (y-0)^3 = 1$$

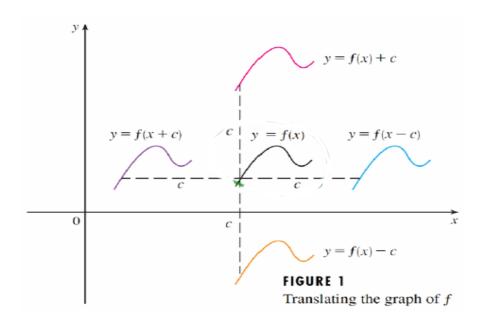
$$\frac{R}{X_0} + \frac{Q}{A_0} = 1$$

Transformations:

New Functions From Old Functions

Translations

Stretches

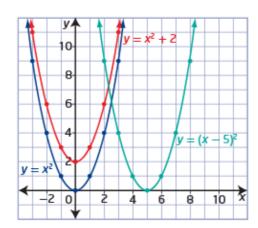

Reflections

Translation

- To translate or shift a graph is to move it up, down, left, or right without changing its shape.
- Translation is summarized by the following table and illustration:

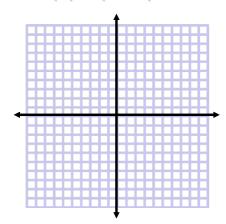
```
Vertical and Horizontal Shifts Suppose c > 0. To obtain the graph of y = f(x) + c, shift the graph of y = f(x) a distance c units upward y = f(x) - c, shift the graph of y = f(x) a distance c units downward y = f(x - c), shift the graph of y = f(x) a distance c units to the right y = f(x + c), shift the graph of y = f(x) a distance c units to the left
```

Translations illustrated...

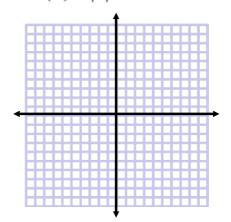

Using Mapping Notation to Describe Transformations:

*Think of this as a set of instructions to follow to transform a graph.

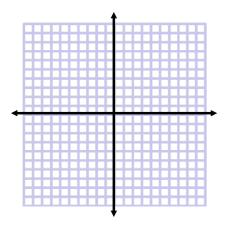
X	$y = x^2$
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

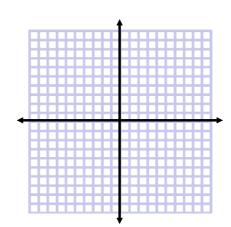

X	$y=x^2+2$
-3	11
-2	6
-1	3
0	2
1	3
2	6
3	11

Х	$y=(x-5)^2$
2	9
3	4
4	1
5	0
6	1
7	4
8	9

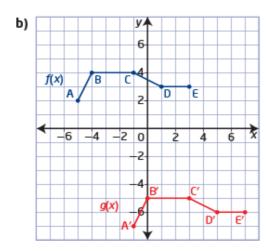


Identify the translations for each of the following...


$$f(x) = (x+7)^2$$


$$f(x) = |x| + 3$$

$$f(x) = \sqrt{x-3} - 2$$



$$f(x) = \frac{1}{x-5} + 7$$

Determine the Equation of a Translated Function:

- Translations are transformations that shift all points on the graph of a function up, down, left, and right without changing the shape or orientation of the graph.
- The table summarizes translations of the function y = f(x).

Function	Transformation from $y = f(x)$	Mapping	E <i>x</i> ample
y - k = f(x) or $y = f(x) + k$	A vertical translation If $k > 0$, the translation is up. If $k < 0$, the translation is down.	$(x,y) \rightarrow (x,y+k)$	y - k = f(x), k > 0 $y = f(x)$ $y - k = f(x), k < 0$
y = f(x - h)	A horizontal translation if $h > 0$, the translation is to the right. If $h < 0$, the translation is to the left.	$(x, y) \rightarrow (x + h, y)$	y = f(x - h), h > 0 $y = f(x)$ $y = f(x)$ $y = f(x)$

• A sketch of the graph of y - k = f(x - h), or y = f(x - h) + k, can be created by translating key points on the graph of the base function y = f(x).

Homework