Step 1:
$$V_f = V_{0E} + \bar{\alpha}_E t$$

 $= V_{0E} + \bar{\alpha}_E t$
 $= V_{0N} + \bar{\alpha}_N t$
 $= V_{0N}$

```
Step 1: d_{E} = \sqrt{0}t + \frac{1}{2}d_{E}t^{2}
= (6.11)(18) + \frac{1}{2}(1.05)(18)^{2}
= 109.98 + 170.1
= 280.1 m
d_{N} = \sqrt{0}n t + \frac{1}{2}d_{N}t^{2}
= (-2.22)(18) + \frac{1}{2}(1.82)(18)^{2}
= -39.96 + 294.84
= 254.9 m
d = \sqrt{(280.1)^{2} + (254.9)^{2}} \quad \beta = \tan^{-1}(\frac{254.9}{280.1})
= 378.7 m \quad [E42^{\circ}N]
```

```
Applications of Vectors

(-3) \sqrt{1} = 9.2 \, \text{m/s} \quad \text{[E 25°N]}

\sqrt{1} = 11 \, \text{m/s} \quad \text{[E 14°S]}

\sqrt{1} = 7.9 \, \text{s}

Step 1: a) a^{1} = 7

\sqrt{1} = 7.2 \, \text{cos } 25^{\circ}

\sqrt{1} = 7.2 \, \text{sin } 25^{\circ}

\sqrt{1} = 7.2 \, \text{cos } 25^{\circ}

\sqrt{1} = 7.2 \, \text{sin } 25^{\circ}

\sqrt{1} = 7.2 \, \text{sin } 25^{\circ}

\sqrt{1} = 7.2 \, \text{sin } 25^{\circ}

\sqrt{1} = 10.67 \, \text{m/s}

\sqrt{1} = 10.
```

$$\frac{1}{d_{E}} = \sqrt{\frac{1}{0}} \pm \frac{1}{2} \frac{1}{2} \pm \frac{1}{2}$$

$$\frac{1}{2} = \sqrt{\frac{1}{0}} \pm \frac{1}{2} \frac{1}{2} \pm \frac{1}{2}$$

$$= (8.34)(7.9) \pm \frac{1}{2} (0.29)(7.9)^{2}$$

$$= (5.88) \pm 9.05$$

$$= 74.9 \text{ m}$$

$$\frac{1}{2} = \sqrt{\frac{1}{0}} \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2}$$

$$= (3.89)(7.9) \pm \frac{1}{2} (-0.83)(7.9)^{2}$$

$$= 30.73 \pm (-25.9)$$

$$= 4.83 \text{ m}$$

$$\frac{1}{2} = \sqrt{\frac{1}{2}} \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2}$$

$$= 30.73 \pm (-25.9)$$

$$= 4.83 \text{ m}$$

$$\frac{1}{2} = \sqrt{\frac{1}{2}} \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2}$$

$$= \sqrt{\frac{1}{2}} \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2}$$

$$= \sqrt{\frac{1}{2}} \pm \frac{1}{2} \pm \frac{1}{2}$$

$$= \sqrt{\frac{1}{2}} \pm \frac{1}{2} \pm \frac{1}{$$

(5)
$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{$$

```
| Wenticel | Vx = 24 m/s | Voy = 0 m/s | d_{0x} = 0 m | d_{0y} = 0 m | d_{0y} = 15 m | d_{0y} = 15 m | d_{0y} = 3 con  | d_{0y} = 3 co
```



```
\frac{\sqrt{1} - 2}{\sqrt{1} - 2} = \frac{m_1 - 0.125 \, kg}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}{\sqrt{1} - 2.5 \, m/s} = \frac{\sqrt{1} - 2.5 \, m/s}
```

(12)	m=76.0 kg Fa=535 N
	Frenz = 15.0 N Ø = 28.0° to the horizontal
- 7	
-	Fox = 5.35 cos 28°
-	= 4721
	E525 sin 28°
	Fay = -535 sin 28° = -251N
-).	
.).	Fa=ma
)	Fg = mg = (75.0 \(-9.81 \)
-	= -736 N
=)	
= >	X-direction: Fretz = I forces in x-direction
(-)	Fretx = Fex + F
	15.0 = 472 + Fg.
5)	克=-467 N
()	
	1.Fp1=457N
-)	
3	y-direction:
- }	Frety = Eforces in y-direction
1	They - Fay + Tay + Tay
)	E = 0 = (-751) - 9- 736)
/	Frety = Fay + (Fa) + Fg Fu = Fay + (Fa) - Fay - Fay FN = 0 - (-251) - (-736) FN = 987 N
11	
5	N= Fp - 457N = 0.46
	Fr 987 N = [0.46]
1	

(13) largest mass = ? To 35 1300 1350 Tg
$Sin \beta = Tg$
Ty = Tsin & Ty = 1750 sin 25° [Ty = 740 M] (max weight can be supported
19-770N (max weight can be supported
Frety = Enforces in y-direction
Frety = Zi forces in y-direction 0 = Fg + 2 Ty 0 = Fg + 2 (\$\frac{4}{4}40) -1480 = Fg
-1480 = Fg
Fg = mg -1480 = m(-9,81)
-9.8/ -9.8/
[151kg = m]

