Fractional Exponents

Fractional Exponent?

40.5

What if...

Fractional Exponents

to

Radicals

Exponent button.

Express the radical as a power.

Let's Take a Gloser Look!!

Fill in the chart. (You can use your calculator!!)

x	$x^{\frac{1}{2}}$
1	$1^{\frac{1}{2}} =$
4	$4^{\frac{1}{2}} = \partial$
9	96-3
16	16' = 4
25	25/3=5

x	$x^{\frac{1}{3}}$
1	1/3 = 1
8	81/3 = 7
27	77 ³ = 3
64	641/8 = 4
125	125 13 = 5

What do you notice?

Our Conclusion

- Raising a number to an exponent of 1/2 is equivalent to taking the square root!
- Raising a number to an exponent of 1/3 is equivalent to taking the cube root!

$$\mathbf{X}^{1/\mathbf{n}} = \sqrt[n]{\mathbf{X}}$$

Practice Questions

Calculate each of the following without using a calculator:

Calculate each of the following without using a calculator:

360.5

320.2

6250.25

$$= 36^{5/10}$$

$$= 33^{3/1}$$

Calculate each of the following without using a calculator:

Therefore: $\mathbf{x}^{\mathbf{m}/\mathbf{n}} = (\sqrt[n]{\mathbf{x}})^{\mathbf{m}}$

Write as a power:

Calculate the following

without using a calculator:

Calculate the following

without using a calculator:

Check out page 227.

Questions:

5, 6,

7a,b, f

8,

10a,c,f,

11, 15

* anything to the power of O equals 1

Exi
$$5^{\circ} = 1$$

$$36^{\circ} = 1$$

$$(1/3)^{\circ} = 1$$

$$4^{\circ} = 1$$

Check out page 227 of your text book. Questions:

5, 6, 7a,b, f 8,10a,c,f,11

To multiply powers with the same base youadd.

$$a^m \times a^n = a^{m+n}$$

Examples: $x 5^2 = 5^5$

$$x 5^2 = 5^5$$

$$x 8^2 = 8^7$$

$$\sqrt{4^2 = 4^6}$$

$$5^{1/2} \times 5^{1/2} = 5$$

1/2 + 1/2 = 2/2= 1

This can also be written like:

$$\sqrt{5} \times \sqrt{5} = \sqrt{25}$$

$$= 5$$

This can also be written like:

