- 1. A car accelerates from 15 m/s [E] to 25 m/s [W] in 26 seconds.
 - a. Calculate the acceleration of the car. { $\vec{a} = -1.54 \text{ m/s}^2$ }
 - b. Calculate the displacement of the car during the above acceleration. $\{\vec{d}_f = -130 \text{ m}\}$
 - c. Calculate the velocity of the car if it continues to accelerate for an additional 15 seconds. $\{\vec{v}_f = -48.0 \text{ m/s}^2\}$
- 2. A ball is kicked 20 m [E], 35 m [W], 50 m [E], and finally 10 m [W]. If all of this takes place in 52 seconds calculate:
 - a. the average speed of the ball. $\{v_{sp} = 2.2 \text{ m/s}\}$
 - b. the average velocity of the ball. $\{\vec{v}_{avg} = 0.48 \text{ m/s}\}$
- 3. A person is standing atop a cliff that is 250 m high cliff overlooking the water below. Not happy with the new iPhone 5S she drops the phone. Hints: use the acceleration of gravity for the Earth; and when an object is dropped the initial velocity is zero.
 - a. Calculate the time it takes for the iPhone to hit the water below. $\{t = 7.1 \text{ s}\}$
 - b. Calculate the velocity as it enters the water. $\{\vec{v}_f$ = -70.0 m/s $\}$
 - c. Calculate the velocity of the iPhone 75 m above the water. { \vec{v}_f = -58.6 m/s}
- 4. Standing on the ground a person throws a spear. It leaves his hand with an upward velocity of 21 m/s.
 - a. Calculate the length of time the spear will be traveling upwards. $\{t = 2.1 \text{ s}\}$
 - b. Calculate the spear's maximum height. $\{\vec{d}_f = 22.5 \text{ m}\}$
 - c. Calculate the velocity of the spear when it is 15 m above the ground. $\{\vec{v}_f = \pm 12.1 \text{ m/s}\}$
- 5. A plane changes its velocity from 215 m/s [S] to 300 m/s [N]. The acceleration was 5.72 m/s^2 .
 - a. Calculate the time it took for the plane to change its velocity. $\{t = 90.0 \text{ s}\}$
 - b. Calculate the displacement of the plane in that time. $\{\vec{d}_f = 3830 \text{ m}\}$
 - c. Calculate the distance the plane traveled in that time. Hint: find the distance the plane traveled in both the South and Northern directions. $\{d = 11\ 900\ m\}$
- 6. A fighter jet initially flying 250 m/s [E] turns to fly a supersonic 400 m/s [W]. This happens in 12 seconds.
 - a. Calculate the acceleration of the plane. $\{\vec{a} = -54.2 \text{ m/s}^2\}$
 - b. Calculate the displacement of the plane in that time. $\{\vec{d}_f = -900 \text{ m}\}$
 - c. Calculate the distance traveled by the plane in that time. $\{d = 2050 \text{ m}\}$
- 7. A cannonball is fired from a 250 m high cliff towards a galleon. Its vertical, upward, velocity is 75 m/s.
 - a. Calculate the maximum height above the water the cannonball reaches. $\{\vec{d}_f = 536 \text{ m}\}$
 - b. Calculate the vertical velocity with which the cannonball strikes the galleon. $\{\vec{v}_f = -103 \text{ m/s}\}$
 - c. Calculate the length of time the cannonball takes to travel from the cannon to the galleon. $\{t = 18.1 \text{ s}\}$
- 8. A car is driving around a circular track. The track has a radius of 100 m. Starting from rest it accelerates to 30 m/s in 12 seconds then holds a constant speed of 30 m/s.
 - a. Calculate the distance moved along the track during the acceleration. $\{d = 180 \text{ m}\}$
 - b. Calculate the average speed and velocity when the car is half way around the track. $\{v_{sp} = 19.0 \text{ m/s}; \vec{v}_{ava} = 12.1 \text{ m/s}\}$
 - c. Calculate the average speed and velocity when the car has returned to its starting position. $\{v_{sp} = 23.3 \text{ m/s}; \vec{v}_{avg} = 0.0 \text{ m/s} \}$
 - d. **Challenge**: Calculate the average velocity during the car's first 12 and 20 seconds of motion. $\{\vec{v}_{avg} = 6.5 \text{ m/s}; \vec{v}_{avg} = 4.3 \text{ m/s}\}$