April 10, 2018

- cont with graphing acceleration
 - answers from yesterdays question
 - guided practice

Reminder Test Tuesday Acceleration Unit

A: object moves in a positive (+) direction with zero acceleration and a constant velocity

B: Slows down in the (+) direction with a negative acceleration

C: Moves a constant velocity in the (+) direction with zero acceleration.

A: object moves in a (+) direction slowing down with a negative acceleration

B: object stops moving with a zero acceleration

C: Object changes directions and moves in the (-) direction with a negative acceleration, while speeding up.

Velocity - Time Analysis Questions: Guided Practice

Qualitative Analysis (no calculations)

East

- 1. In what direction was the initial acceleration?
- 2. Describe the direction of the velocity and acceleration of the
- 3. For how many seconds was the object not accelerating?4s
- 4. At what time(s) did the object change directions? los
- 5. Did the object spend more time traveling east or west?وينا
- 6. In which direction did the object cover the most distance?
- 7. Was the final displacement of the object east or west of the starting point? East

Velocity - Time Analysis Questions: Guided Practice

Qualitative Analysis (no calculations)

- 1. In what direction was the initial acceleration? South
- 2. Describe the direction of the velocity and acceleration between 8 and 11 seconds. South North
- 3. For how many seconds was the object not accelerating?
- 4. At what time(s) did the object change directions?
- 5. Did the object spend more time traveling North or South
- 6. In which direction did the object cover the most distance?
- 7. Was the final displacement of the object North or South of the starting point?

Velocity - Time Analysis Questions: Guided Practice

Quantitative Analysis (calculations)

- Calculate the initial acceleration.
- Calculate the distance traveled during the first 6 seconds.
- 3. Calculate the total distance traveled east.
- Calculate the total distance traveled west.
- 5. Calculate the position at the 20 s mark.
- 6. Calculate the average velocity and speed for the 20 s.
- 7. Calculate the acceleration at the 9.31 s mark.

1.
$$\frac{1}{c} = \frac{\sqrt{4 - \sqrt{0}}}{4z - 4} = \frac{6 - 0}{3 - 0} = \frac{6}{3} = \frac{2m/s^2[E]}{3}$$

1. $\frac{1}{4} = \frac{\sqrt{1-\sqrt{0}}}{4\sqrt{1-\sqrt{0}}} = \frac{6-0}{3} = \frac{6}{3} = \frac{2m/s^2[E]}{3}$ 2. $\frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{6}{3} = \frac{2m/s^2[E]}{3}$ 2. $\frac{1}{2} + \frac{1}{4} + \frac{1}{4} = \frac{6}{3} = \frac{2m/s^2[E]}{3}$ 2. $\frac{1}{2} + \frac{1}{4} + \frac{1}{4} = \frac{6}{3} = \frac{2m/s^2[E]}{3}$ 2. $\frac{1}{2} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4}$