Untitled.notebook **April 23, 2018**

April 23, 2018

- 1) Review Inertia, Gravitational Force
- 2) Practice problems with force of gravity

Gravitational Force

Terms to know:

· Mass: measure of amount of matter. (Kg)

• Weight: measure of the force of gravity.
• Acceleration due to gravity (Newton)

• Acceleration due to gravity

$$F_g = mg$$

 F_g = Force of gravity (weight) (N) m = mass (kg)g= acceleration due to gravity (m/s²)

Mass is constant throughout the universe, but weight changes depending on where you are.

Untitled.notebook April 23, 2018

- g varies depending on....
 - the mass of the planet
 - distance to planet
- i.e. On earth $g = 9.81 \text{m/s}^2$

On the moon $g = 1.64 \text{m/s}^2$

see Physics handbook handout Table 4.4 and 4.3

Force of Gravity Practice Problems

1. Calculate the force of gravity on a 45 kg mass located at the peak of Mt. Everest.

2. At the equator a person has a weight of 1075 N, calculate his mass.

Fg=1075N, calculate his mass. Fg = mg $\frac{1075}{9.7805} = \frac{m9.7805}{9.7805}$ $\frac{1075}{9.7805} = \frac{m9.7805}{9.7805}$ $\frac{110}{9.7805} = \frac{1075}{9.7805} = \frac$

3. How many times stronger is the force of gravity at the bottom of the Mariana Trench than on the ISS? (assume the same object at each location)

$$F_{gtrench} = 9.8331 \text{m/s}^2$$
 $F_{gt} = 1.09$
 $F_{glSS} = 9.0795 \text{m/s}^2$ F_{glSS}

*Unless given a specific location, take the $g = 9.81 \text{ m/s}_2$ for an object located anywhere on the Earth.

Untitled.notebook April 23, 2018

pg 137 #1-4, Force of Gravity Review MC WS