Waves

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_en.html

https://phet.colorado.edu/sims/html/pendulum-lab/latest/pendulum-lab_en.html

Reference material:

Chapter 10.4 (pg 248) of JMH Physics Chapter 8 of MHR

- ⇒ A wave is a transfer of energy, in a form of a disturbance usually through a material substance, or medium.

 - ⇒ Pressure waves
- ⇒When objects repeat a pattern of motion (e.g. a pendulum), we say that object is vibrating or oscillating.
- ⇒The oscillation is repeated over and over with the same time interval each time.
- ⇒One complete oscillation is called a cycle.
- ⇒The number of cycles per second is called the <u>frequency</u>, **f**. The frequency is measured in Hertz (Hz).
- ⇒ The <u>period</u>, T, usually measured in seconds, is the time required for one cycle. The frequency and period are reciprocals of each other.

Close Read Pg 338 - 339 of MHR. Pay attention to and note the many terms introduced.

Figure 8.2 (A) When a simple pendulum completes one full cycle of its motion, it is in its original position.

(B) One full cycle of the motion of the mass on a spring brings the mass back to the rest position.

PERIOD AND FREQUENCY

The period is the quotient of the time interval and the number of cycles. $T = \frac{\Delta t}{N}$

The frequency is the quotient of the number of cycles and the time interval. $f = \frac{N}{\Delta t}$

The frequency is the reciprocal, or inverse, of the period. $f = \frac{1}{T}$

Quantity	Symbol	SI unit
period	T	s (seconds)
frequency	f	Hz (hertz)
time interval	Δt	s (seconds)
number of cycles	N	none (pure number)
4		

Note: $1 \text{ Hz} = \frac{1}{s} = 1 \text{ s}^{-1}$

Example. A pendulum completes 30 cycles in 15 seconds. Calculate its frequency and period.

Read MHR pg 344 - top of 345.

Follow Up Questions:

- 1. What is a medium when talking about waves?
- 2. Summarize the properties of mechanical waves.
- 3. What determines the speed of a mechanical wave? Provide an explanation for your answer.
- 4. What affect does friction have within a mechanical wave?

Transverse Waves

- ⇒ The particles in the medium vibrate at right angles to the direction in which the wave travels.
- ⇒ The high section is called the crest, and the low section is called the trough.
- ⇒ The height of the crest or depth of the trough, from the equilibrium position is called the <u>amplitude</u>.
- \Rightarrow For periodic waves, the distance between successive crests and troughs is equal and is called the <u>wavelength</u>. The symbol for the wavelength is the Greek letter lambda, λ
- ⇒ The period of a transverse wave is the time it takes for one wavelength (one cycle) to pass a fixed point.
- ⇒ The frequency is the number of wavelengths that passed a fixed point in one second.
- ⇒ Examples include water waves and making vibrations on a rope.

Longitudinal Waves

- ⇒ The vibrations of the particles are parallel to the direction of motion.
- ⇒ There are a compressions and rarefactions created in longitudinal waves.
- ⇔ One wavelength is the distance between
 the midpoints of successive compressions or
 rarefactions.
- ⇒ The amplitude is the maximum displacement of the particles from their rest position. Amplitude is a measure of the wave's energy.
- ⇒ Sound waves, pressure waves are examples.