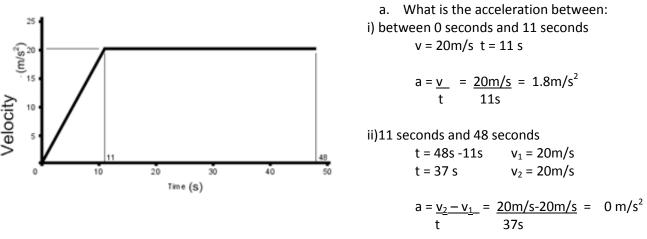
1. Define the following terms: You can find the definitions in the glossary of your textbook as well as your notes

2. State the number of significant digits in each of the following values:							
a.	3SF	c.	2SF	e.	4SF		
b.	1SF	d.	4SF	f.	1SF		
3. Round each of the following to four significant digits							
a.	0.004563	d.	0.0002368	g.	48.89		
b.	25.37	e.	306.5	h.	0.005065		
c.	1001	f.	3001				


4. Evaluate each of the following using either the certainty or the precision rules for significant figures. a. 121 b. 24.7 cm c. 1 min

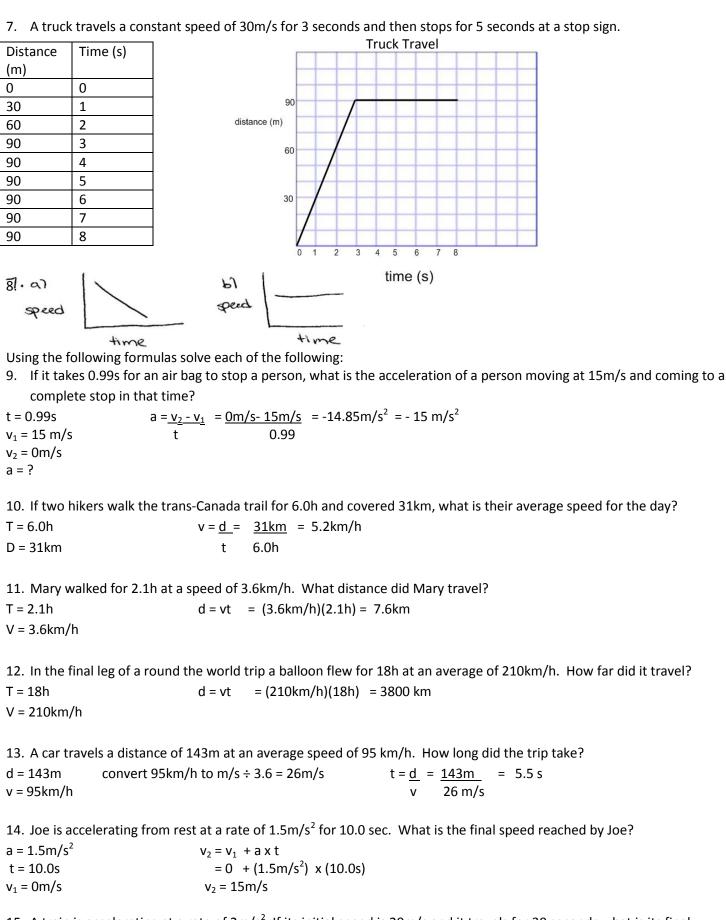
- f. 2h d. 89.3 km/h e. 13.1h
- 5. Use the following graph to answer the questions below: a) What is the average speed between:

i) a and b	v =	$\frac{d_2 - d_1}{t_2 - t_1} = \frac{8 - 0}{1.5} = \frac{8}{1.5} = 5.3 \text{ m/s}$
ii) b and c	v =	$\frac{d_2 - d_1}{t_2 - t_1} = \frac{6.5 \cdot 8}{3 \cdot 1.5} = \frac{-1.5}{1.5} = -1 \text{ m/s}$
iii) c and d	v =	$\frac{d_2 - d_1}{t_2 - t_1} = \frac{6.5 - 6.5}{6-3} = \frac{0}{4} = 0 \text{ m/s}$
iv) d and e	v =	$\frac{d_2 - d_1}{t_2 - t_1} = \frac{1.5 - 6.5}{8-6} = \frac{-5}{2} = -2.5 \text{ m/s}$

b) Which line shows the greatest speed? From a to b

6. Use the following graph to answer the questions below:

= 110m + 740 m


= 850 m

b. Determine the total distance travelled from 0 seconds to 48 seconds.

d = 1/2 v x t in the triangular section 0 s to 11 s Total = $d_1 + d_2$ d = 1/2 (20m/s) x (11s) d₁ = 110m

d = v x t in the square section 11 s to 48 s d = (20m/s) x (37s) d₂ = 740 m

7. A truck travels a constant speed of 30m/s for 3 seconds and then stops for 5 seconds at a stop sign.

14. Joe is accelerating from rest at a rate of 1.5m/s² for 10.0 sec. What is the final speed reached by Joe?

15. A train is accelerating at a rate of 2m/s². If its initial speed is 20m/s and it travels for 30 seconds what is its final velocity?

$a = 2m/s^2$	$v_2 = v_1 + at$
v ₁ = 20m/s	$v_2 = 20m/s + (2m/s^2) (30s)$
t = 30s	v ₂ = 20m/s + 60m/s
	v ₂ = 80m/s

16. While pulling a barge, a tugboat accelerates at 0.11 m/s² to produce a 5.0 m/s change in speed of the barge. How long did this take?

a= 0.11 m/s ²	t = <u>v</u>	=	<u>5.0m/s</u>	=	45 s
v = 5.0m/s	а		0.11m/s	2	

17. The NASA Space Shuttle touches down on a runway and begins accelerating at a speed of -8.80 m/s². It comes to a stop after 40 s on the runway. What was its speed when it hit the runway?

a = -8.80m/s ²	$v_1 = v_2 - at$
v ₂ = 0m/s	$v_1 = 0m/s - (-8.80m/s^2)$ (40s)
t = 40s	v ₁ = 0m/s - (-352m/s)
	v ₁ = 400m/s

18. A runner achieves a velocit	y of 12.20 m/s; 10.0 sec after he begins calculate his acceleration.

v = 12.20 m/s $a = \frac{v}{v} = \frac{12.20 \text{ m/s}}{10.0 \text{ s}} = 1.22 \text{ m/s}^2$ t = 10.0 st

19. It takes Johnny 0.30 hour to drive to school. His route is 20.0 km long. What is Johnny's average speed on his drive to school?

t = 0.30 h $v = \frac{d}{d} = \frac{20.0 \text{ km}}{1000 \text{ km}} = 67 \text{ km/h}$ d = 20.0 km t 0.30 h v = ?

20. A bottle nosed dolphin is cruising along and then accelerates at 0.50m/s² to reach a final speed of 9.7 m/s after 15s. What was the initial speed of the dolphin?

 $\begin{array}{ll} a=0.50 m/s^2 & v_i = v_f - at \\ v_f = 9.7 \ m/s & v_i = 9.7 m/s - (0.50 m/s^2)(15s) \\ t = 15s & v_i = 9.7 m/s - 7.4 m/s \\ v_i = 2.3 m/s \end{array}$

21. In 1997, *Thrust SSC*, the world's fastest jet-engine car, traveled 715m at an average speed of 325m/s. The length of time it took in *minutes* was?

d=715m	t= <u>d</u>	= <u>715m</u> =	2.2 s	convert seconds to minutes 2.2s <u>x 1 minute</u>	= 0.037 minutes
v = 325m/s	v	325m/s		60 seconds	
t = ?					

22. Starting from rest if your acceleration is 4.5m/s² how fast are you travelling after 4 seconds?

 $\begin{array}{ll} V_i = 0 & v_f = vi + at \\ a = 4.5m/s^2 & v_f = 0 + (4.5m/s^2)(4s) \\ t = 4s & v_f = 0 + 18m/s \\ vf = ? & v_f = 18m/s \end{array}$

23. A car increases its acceleration from 0 to 80km/h in 30 seconds its acceleration is?

 $V_i = 0 \text{km/h}$ $a = \underline{v_f - v_i}$ $= \underline{80 \text{km/h} - 0 \text{km/h}}$ $= \underline{80 \text{km/h}} = 2.67 \text{km/h/s}$
 $V_f = 80 \text{km/h}$ t
 30s
 30s

 t = 30 s t
 30s
 30s