
Simple and Compound Interest

- Interest calculated as a percentage of the principal.

- the interest paid on the principal plus interest

Terminology Tango

daily semi-annually

monthly

quartly

weekly emi monthly annualy

365 times a year (n=365)

twice a year

 $(h=\overline{\partial})$

twelve times a year (n = 13)

four times a year (n=4)

50 times a year (n=50)
06 times a year (n=26)
04 times a year (n=24)

I time each year (n=1)

Allison wants to invest \$2000.00. His bank offers an investment option that earns compound interest at a rate of 1.75% per year compounded annually for 3 years.

Interest period	Investment value at beginning of period	Interest earned I = Prt	Investmen t value at end of period
1	\$2000	$2000 \times 0.0175 \times 1 = 35$	\$2035
2	\$2035	\$2035x0.0175x1= \$35.61	\$2070.61
3	\$2070.61	\$2070.61x0.0175x1= \$36.24	\$2106.85

Allison wants to invest \$2000.00. His bank offers an investment option that earns compound interest at a rate of 1.75% per year for 2 years.

> $\begin{array}{c} Interest\ earned \\ I=Prt \end{array}$ Investment Investment value at value at beginning of period end of period \$2035 \$2000 $$2000 \times 0.0175 \times 1 = 35 2 \$2035x0.0175x1= \$35.61 \$2070.61 \$2106.85 $2070.61 \times 0.0175 \times 1 = 36.24$

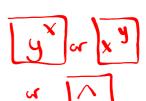
Formula:

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

A = final value of the investment ...(principal + interest)

P = principal (Invistment or 8 you start with)

r = annual interest rate (expressed as a decimal) n = number of compounding periods in a year Extra number of years



Allison wants to invest \$2000.00. Her bank offers an investment option that earns compound interest at a rate of 1.75% per year compounded annually for 3 years.

10

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = \frac{2000}{1 + \frac{0.0175}{1}}$$

Calculate the final value of an initial investment of \$6000.00. Interest is paid at 4% per annum, compounded semi-annually, for three years.

A = final value of the investment ...(principal + interest)

P = principal

r = annual interest rate

n = number of compounding periods in a year

t = term of the investment or loan in number of years

Given:
$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = 0.04$$

$$A = 6000 \left(1 + \frac{0.04}{3}\right)^{(3)(3)}$$

$$A = 6000 \left(1 + 0.03\right)^{6}$$

$$A = 6000 \left(1.03\right)^{6}$$

Calculate the final value of an initial investment of \$8500.00. Interest is paid at 3.75% per annum, compounded semi-annually, for three years.

Given:	$A = P\left(1 + \frac{r}{n}\right)^{nt}$
P= 8500	$A = 8500 \left(1 + \frac{0.0375}{2} \right)^{2(3)}$
r=0.0375	(- /
<i>U</i> = 9	$A = 8500 \left(1 + 0.01875\right)^6$
+=3	$A = 8500 (1.01875)^6$
	A = 8500(0.117907)
	A = 1002.21

Homework

Compound Interst - Day #2

1.
$$A = P(1 + \frac{1}{h})^{n+1}$$
 $A = 6300(1 + 0.016)^{24(6)}$
 $A = 6300(1.0006)^{144}$
 $A = 6300(1.100725856)$
 $A = 6300(1.100725856)$
 $A = 6300(1.100725856)$
 $A = 6300(1.100725856)$
 $A = 6300(1.00725856)$
 $A = 2500(1.0072)^{10}$
 $A = 2500(1.0072)^{10}$
 $A = 2500(1.230998208)$
 $A = 63077.50$
 $A = 63077.50$

3.
$$A = P \left(1 + \frac{r}{n}\right)^{n+1}$$

$$2000 = P \left(1 + \frac{0.062}{12}\right)^{12(2)}$$

$$2000 = P \left(1.00516\right)^{24}$$

$$2000 = P \left(1.13165455\right)$$

$$1.13165455 = 1.13165455$$

$$P = 1767.32$$

4.
$$A = P(1+\frac{1}{h})^{n+1}$$
 $A = 3500(1+0.005)^{(26)(6)}$
 $A = 3500(1.00019230+)^{156}$
 $A = 3500(1.030451562)$
 $A = \frac{4}{3606.68}$

5. $A = P(1+\frac{1}{h})^{n+1}$
 $A = 5000(1.075)^{(3)(10)}$
 $A = 5000(1.075)^{10}$
 $A = 5000(1.061031562)$
 $A = 10,305.16$

6.
$$A = P(1 + \frac{r}{n})^{n+}$$
 $7540 = P(1 + \frac{0.018}{52})^{(52)}(5)$
 $7500 = P(1.000346154)^{260}$
 $7500 = P(1.094187244)$
 $1.094157244 = \frac{1.094187244}{6854.59}$

7.
$$A = P(1 + \frac{1}{h})^{n+}$$
 $A = 4200(1 + \frac{0.0005}{365})^{(565)(10)}$
 $A = 4200(1.00000137)^{3650}$
 $A = 4200(1.005012517)$
 $A = 4221.05$

8. $A = P(1 + \frac{1}{h})^{n+}$
 $A = 6400(1 + \frac{0.062}{2})^{(2)(5)}$
 $A = 6400(1.031)^{10}$
 $A = 6400(1.357031264)$
 $A = 8684.94$

Quick way to estimate how long it will take your money to double in value.

72

annual interest rate

How long will it take an investment to double with an interest rate of 3.00% per annum?

$$\frac{72}{3}$$
 = 24 years