- 1. A 25 kg crate is pulled at a constant velocity with an applied force of 125 N.
 - a. Calculate the force of friction. (-125 N)
 - b. Calculate the normal force on the crate. (245 N)
 - c. Calculate the coefficient of kinetic friction. (0.51).

$$0 = F_0 + 125$$

 $F_4 = -125 N$

$$M = \frac{F_4}{F_N} = \frac{125}{245} = 0.51$$

- 2. A sled has a weight of 75 N and is being pulled with a net force of 15 N. The coefficient of kinetic friction is 0.19.
 - M a. What is the mass of the sled? (7.6 kg)
 - b. What is the force of friction? (14.25 N)
 - c. What is the applied force? (29.25 N)

a)
$$F_g = mg$$
, $g = 9.81 m/s^2$
 $F_g = m (9.81)$
 $F_g = m (9.81)$
 $F_g = m (9.81)$
 $F_g = (0.119)(75N)$
 $F_g = 14.25N$

()
$$F_a = ?$$

 $F_{net} = \sum_{i} F_{orces}$
 $F_{net} = F_a + F_a$
 $15 = F_a + (14.25)$
 $15 = F_a + (14.25)$

Physics 112 Forces in 1D 3. A 55 kg box is moved with a net force of 28 N. The applied force necessary is 185 N.

- - a. What is the force of friction? (-157 N)
 - b. What is the normal force? (540 N)
 - c. What is the coefficient of kinetic friction? (0.29)

a)
$$F_{net} = \sum F_{orces}$$

 $F_{net} = F_a + F_f$
 $28 = 185 + F_f$
 $[-157N = F_f]$

c)
$$F_{f} = \mu F_{N}$$

 $\mu = \frac{F_{f}}{F_{N}}$
 $\mu = \frac{157}{540} = 0.29$

F_N = F_g

$$F_{N} = mg$$

$$F_{N} = (55 kg)(9.8 lm/s^{2})$$

$$F_{N} = 540 N$$

- 4. A box is being pulled across the floor at a constant velocity with an applied force of 184 N. The coefficient of a. What is the force of friction? (-184 N) ~ 0 N kinetic friction is 0.26.

 - b. What is the force of gravity on the box? (708 N)
 - c. What is the mass of the box? (72.2 kg)

c. What is the mass of the box? (72.2 kg)

a)
$$F_{net} = \sum_{f} F_{orces}$$

Fret = $F_a + F_f$
 $O = 184 + F_f$
 $F_f = \mu F_N$
 $F_f = \mu F_N$

()
$$M=?$$

 $F_g=Mg$
 $-708N=M(-9.81 M_{52})$
 $72.2 Kg=M$

m, Fg

- 5. A 46 kg object is being pulled with an applied force of 200 N. The coefficient of kinetic friction is 0.18.
 - a. What is the force of gravity on the object? (451 N)
 - b. What is the force of friction acting on the object? (81 N)
 - c. What is the net force acting on the object? (119 N)

a)
$$F_g = Mg$$

 $= (46)(-9.81)$
 $F_g = -451 \text{ N (downward)}$
 $|F_g| = +451 \text{ N}$

b)
$$F_{5} = \frac{1}{2}$$

 $F_{6} = F_{N} \rightarrow 451$
 $F_{7} = \mu F_{N}$
 $F_{7} = (0.18)(451)$
 $F_{8} = 81N$